K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Cách 1: Dùng định nghĩa hai phân thức bằng nhau:

2(x3 + 7x2 + 12x) = 2x3 + 14x2 + 24x

(x + 4)(2x2 + 6x) = 2x3 + 6x2 + 8x2 + 24x = 2x3 + 14x2 + 24x

⇒ 2(x3 + 7x2 + 12x) = (x + 4)(2x2 + 6x)

Giải bài 57 trang 61 Toán 8 Tập 1 | Giải bài tập Toán 8

- Cách 2: Rút gọn phân thức:

Giải bài 57 trang 61 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

a) 32x332x−33x+62x2+x63x+62x2+x−6

Cách 1: Dùng định nghĩa hai phân thức bằng nhau.

32x332x−3= 3x+62x2+x63x+62x2+x−6

Vì : 3(2x2+x6)=6x2+3x183(2x2+x−6)=6x2+3x−18

=6x2+12x9x186x2+12x−9x−18

=2x(3x+6)3(3x+6)2x(3x+6)−3(3x+6)

=(2x3)(3x+6)(2x−3)(3x+6)

Cách 2: Rút gọn phân thức

3x+62x2+x6=3(x+2

30 tháng 4 2017

a ) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\) (1)

\(\dfrac{2x^2+x-1}{6x-3}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\) (2)

Từ (1) ; (2) \(\Rightarrow\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) (đpcm)

b ) \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\) (3)

\(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\) (4)

Từ (3) và (4) \(\Rightarrow\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\) (đpcm)

13 tháng 5 2017

a) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{x^2+x+2x+2}{3\left(x+2\right)}=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{3\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{3\left(x+2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\left(1\right)\) \(\dfrac{2x^2+x-1}{6x-3}=\dfrac{2x^2+2x-x-1}{3\left(2x-1\right)}=\dfrac{2x\left(x+1\right)-\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\left(2\right)\) Từ (1)và (2)=> \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) b)\(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\left(3\right)\) \(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\left(4\right)\) Từ (3) và (4) => \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\)

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

18 tháng 12 2016

a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)

b, Giá trị của x để phân thức có giá trị bằng (-2) : 

\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)

18 tháng 12 2016

Ai giúp mình câu 2 với

22 tháng 12 2019

\(\frac{2}{6}x-4=\frac{1}{3}x-4\ne\frac{1}{3}x-2\)

27 tháng 6 2017

từ vế trái ta có

\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)

Rút gọn đi x và (x+3) còn

\(\frac{x}{x+3}\)

từ đó suy ra cái bên trên đó .

27 tháng 6 2017

Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP

Vậy ...

11 tháng 11 2017

Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. \(\dfrac{3x}{x-5}\)\(\dfrac{7x+2}{5-x}\)

Ta có:

\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)

\(\dfrac{7x+2}{5-x}\)

Vậy .....

b.\(\dfrac{4x}{x+1}\)\(\dfrac{3x}{x-1}\)

Ta có:

\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)

\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)

Vậy ..........

c. \(\dfrac{2}{x^2+8x+16}\)\(\dfrac{x-4}{2x+8}\)

Ta có:

\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)

\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)

Vậy .........

d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

Ta có:

\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

Vậy .........