K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

a, Đặt d = ƯCLN(2n+3;4n+8)

=> 2(2n+3) ⋮ d; (4n+8) ⋮ d

=> [(4n+8) – (4n+6)]d

=> 2d => d ⋮ {1;2}

Mặt khác 2n+3 là số lẻ nên d ≠ 2.

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau

b, Đặt d = ƯCLN(2n+5;3n+7)

=> 3(2n+5)d; 2(3n+7)d

=> [(6n+15) – (6n+14)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.

c, Đặt d = ƯCLN(7n+10;5n+7)

=> 5(7n+10)d; 7(5n+7)d

=> [(35n+50) – (35n+49)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau

23 tháng 10 2017

26 tháng 7 2015

a) gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.

b) gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

30 tháng 10 2016

Gọi d là ƯCLN(7n+10, 5n+7)

Ta có: 7n+10 chia hết cho d, 5n+7 chia hết cho d

<=>[5(7n+10)-7(5n+7)] chia hết cho d

<=>35n+50-35n+49

<=>1 chia hết cho d

<=> d = 1

các bài còn lại thì giải tương tự

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

17 tháng 2 2020

a) Gọi (2n+2,8n+7) là d  \(\left(d\inℕ^∗\right)\)

Vì (2n+2,8n+7) là d

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)

\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d

\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau

\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản

Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.

Các phần sau tương tự.

22 tháng 4 2020

gọi d là ƯC(5n + 4; 5n + 11)

\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)

\(\Rightarrow15n+12-15n-11⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản

8 tháng 8 2015

a, Gọi ƯCLN(7n+10; 5n+7) là d. Ta có:

7n+10 chia hét cho d => 35n+50 chia hết cho d

5n+7 chia hết cho d => 35n+49 chia hết cho d

=> 35n+50-(35n+49) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> ƯCLN(7n+10; 5n+7) = 1

=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)


Các câu sau tương tự

22 tháng 7 2021

Gọi (n + 3,n + 2) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> (n + 3, n + 2) = 1 

=> ĐPCM

b) Gọi (2n + 3; 4n + 8) = d 

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)

Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)\(\forall n\)

=> d = 2 loại

=> d = 1

=> ĐPCM 

30 tháng 5 2017

a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d

=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d

=>35n+50 chia hết cho d; 35n+49 chia hết cho d

=>(35n+50)-(35n+49) chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n

30 tháng 5 2017

b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m

=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m

=>(4n+8)-(4n+6) chia hết cho m 

=>2 chia hết cho m

=>m thuộc {1;2}

2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2

=>m=1

=>đpcm