K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Cách 1: 4 n + 3 2 - 25 = 4 n + 3 2 - 5 2

= (4n + 3 + 5)(4n + 3 – 5)

= (4n + 8)(4n – 2)

= 4(n + 2). 2(2n – 1)

= 8(n + 2)(2n – 1).

Vì n ∈ Z nên (n + 2)(2n – 1) ∈ Z. Do đo 8(n + 2)(2n – 1) chia hết cho 8.

Cách 2:  4 n + 3 2 - 25 = 16 n 2 + 24 n + 9 - 25  

= 16 n 2  + 24n – 16

= 8( 2 n 2  + 3n – 2).

Vì n ∈ Z nên 2 n 2  + 3n – 2 ∈ Z. Do đo 8( 2 n 2  + 3n – 2) chia hết cho 8.

21 tháng 7 2019

a) Vì n lẻ nên n có dạng 2k + 1

\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)

\(=4k^2+4k+1+8k+4+3\)

\(=4k^2+12k+8=4k\left(k+3k\right)+8\)

Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)

21 tháng 7 2019

b)\(A=n^3+3n^2-n-3\)

\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2

\(=>\left(n-1\right)\left(n+1\right)⋮8\)

Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)

Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1

Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48

21 tháng 7 2016

a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)

\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8  

b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)

Vì B chứa thừa số 4 nên B chia hết cho 4

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24

    

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

16 tháng 8 2015

Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\)  là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.

Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\)  là tích bốn số nguyên liên tiếp.

Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.

 

4 tháng 9 2016

Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22

                              = (5n + 2 - 2)(5n + 2 + 2)

                               = 5n(5n + 4)

Vì 5  5 nên 5n(5n + 4)  5 ∀n ∈ Z.

24 tháng 7 2019

undefined