Chứng minh rằng với mọi số nguyên dương n thì:

A = 3

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

25 tháng 12 2014

Ta có \(^{3^{n+2}-2^{n+2}+3^n-2^n}\)=\(9.3^n-4.2^n+3^n-2^n\)

=\(3^n\left(9+1\right)-2^n\left(4+1\right)=10.3^n-5.2^n\)

\(10.3^n\)chia hết cho 10

vì n nguyên dương nên \(n\ge1\Rightarrow n-1>0\). ta có \(5.2^n=5.2.2^{n-1}=10.2^{n-1}\)chia hết cho 10

suy ra \(10.3^n-5.2^n\)chia hết cho 10 hay\(^{3^{n+2}-2^{n+2}+3^n-2^n}\)chia hết cho 10

 

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

20 tháng 4 2020

Ta có:\(3^{n+2}-2^{n+2}+3^n-2^n\)

=\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
=\(3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

=\(3^n.10-2^n.5\)

=\(3^n.10-2^{n-1}.2.5\)

=\(3^n.10-2^{n-1}.10\)

=\(\left(3^n-2^{n-1}\right).10⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Nhớ tick cho mình nha!

\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(A=3^n.3^3+2^n.2^3+3^n.3+2^n2^2\)

\(A=3^n.27+2^n.8+3^n.3+2^n.4\)

\(A=3^n.30+2^n.12\)

\(A=6\left(3^n.5+2^n.2\right)\)chia hết cho 6

14 tháng 2 2018

\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)

\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)

\(=6.3^{n+1}+6.2^{n+1}\)

\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)