Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abcabc=1000xabc+abc=(1000+1)xabc=1001xabc
Vì 1001 chia hết cho 11 và 13
=> 1001xabc chia hết cho 11 và 13
=> abcabc chia hết cho 11 và 13
Vậy bài toán được chứng minh
Có gì thì tk và kết pn vs mik nha !!!
Ta có:
abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
abcabc = 1000 x abc + abc
= 1001 x abc = 143 x 7 x abc = 91 x 11 x abc = 77 x 13 x abc
=> abcabc chia hết cho 7, 11, 13
abcd = 100ab + cd = 99ab + ab + cd
99ab chia hết cho 11 , ab + cd chia hết cho 11
=> abcd chia hết cho 11
ĐPCM
ab=a.10+b.1
ba=b.10+a.1
a.10+b.1+b.10+a.1
a.(10+1) +b.(10+1)
a.11+b.11
a) Vì abc = ab+bc+ca+cb+ba
nên (ab +ba) + (bc+ca) + ca
=> 2ab +2bc +ca
Mà 2ab > 0
2bc>0
=> abc là số chẵn chia hết cho 11
Sorry bn nhé Nguyễn Mạnh Cường nhưng mk cần câu trả lời là tại sao
Dãy số abc chia hết cho 27 :
108; 135; 162; ...; 999
Từ dãy số trên ta lập dãy số bca :
081; 351; 621; ...; 999
Nhận thấy các số trong dãy số bca luôn chia hết cho 27 và số sau bằng số liền trước công với 270.
Kết luận : abc chia hết cho 27 thì bca cũng chia hết cho 27
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
Suy ra: abcabc chia hết cho 7, cho 11 và cho 13