K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Ta có p - 1 p p + 1   ⋮   3    mà (p, 3) = 1 nên

            p - 1 p + 1   ⋮   3                     (1)

 p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8

Vậy (p – 1)(p + 1) chia hết cho 24.

11 tháng 1 2016

Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .

Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24 

Tick nha !

24 tháng 11 2016

Một số chia hết cho 24 là một số chia hết cho 4,6

Mà chia hết cho 6 là chia hết cho 2 và 3

Theo đề bài thì P>3

Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1) 

=>(P-1)(P+1) sẽ chia hết cho 3

P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)

Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn

Hiệu của (P+1) - (P-1) =2

Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4

=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24

11 tháng 12 2017

Ta có (p-1). p.(p+1) chia het cho 3 ; mà ( p;3)=1 =>(p-1). (p+1)  3 (1) 
Ví p là số nguyên tố lớn hơn 3 => p là số lẻ =>p-1;p+1 là số chẵn (2) 
Từ (1) và (2) => (p-1). p.(p+1) chia hết cho hai số nguyên tố cùng nhau 3 và 8. 
Vậy (p-1). p.(p+1) chia het cho 24

11 tháng 12 2017

Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.

Giải

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

21 tháng 12 2014

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24

21 tháng 12 2014

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

29 tháng 6 2016

Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3

=> p2 chia 3 dư 1

=> p2 - 1 chia hết cho 3 (1)

Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ

=> p2 chia 8 dư 1

=> p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24

=> đpcm

Ủng hộ mk nha ^-^

13 tháng 3 2017

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24 (Đpcm)

13 tháng 3 2017

Vì p là số nt lớn hơn 3 nên p lẻ

=> p - 1, p + 1 là hai số chẵn liên tiếp

=> (p - 1)(p + 1) chia hết cho 8 (hai số chẵn liên tiếp luôn luôn chia hết cho 8)

Vì p > 3 nên p=3k+1 hoặc p=3k+2     (\(p\in N^{sao}\))

+) Với p = 3k + 1 thì p - 1 = (3k + 1) - 1 = 3k chia hết cho 3  thì (p - 1)(p + 1) chia hết cho 3

+) Với p = 3k + 2 thì p +1 = (3k + 2) +1 = 3k + 3 chia hết cho 3 (p - 1)(p + 1) chia hết cho 3.

mà (3;8)=1 nên (p - 1)(p+1) chia hết cho 24 với p >3.

22 tháng 6 2016

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó,p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8

Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3

Vậy A = (p - 1)(p + 1) chia hết cho 24

25 tháng 12 2015

p là số nguyên tố > 3 nên p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>P-1=3k chia hết cho 3
nếu p=3k+2=>p+1 chia hết cho 3
Vậy (p-1)(p+1) luôn chia hết cho 3
Vì p là số nguyên tố >3 nên p là số lẻ -> p-1 và p+1 là 2 số tự nhiên chẵn liên tiếp
Trong 2 số tự nhiên chẵn liên tiếp phải có 1 số chia hết cho 4
số còn lại chia hết cho 2 -> (p-1)(p+1) chia hết cho 8
Vậy (p+1)(p-1) chia hết cho 24 với p là số ng tố >3

9 tháng 10 2019

a

\(A=2+2^2+2^3+.....+2^{30}\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^3\right)+.....+2^{28}\left(1+2+2^2\right)\)

\(A=2\cdot7+2^4\cdot7+....+2^{28}\cdot7⋮7\)

b

Câu hỏi của Bùi Minh Quân - Toán lớp 6 - Học toán với OnlineMath