Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a,b,c,d,e,g đồng thời là lẻ
1 số chính phương lẻ khi chia 8 chỉ dư 1
=>a2+b2+c2+d2+e2 chia 8 dư 5
Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra
Vậy 6 số đã cho ko thể đồng thời là số lẻ
Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương
=>ko tồn tại a,b,c,d,e,g lẻ
Lời giải:
Giả sử tích trên lẻ. Khi đó:
$a+b, b+c, c+d, d+e, e+a$ lẻ
$\Rightarrow (a+b)+(b+c)+(c+d)+(d+e)+(e+a)$ lẻ (tổng của 5 số lẻ là 1 số lẻ)
$\Rightarrow 2(a+b+c+d+e)$ lẻ (vô lý)
Do đó điều giả sử là sai. Tức là tích $(a+b)(b+c)(c+d)(d+e)(e+a)$ chẵn.
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)
*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).
*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.
-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.
=>P chia hết cho
=>P chia hết cho
=>P chia hết cho 32
-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.
Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1
=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.
=>P chia hết cho 32
Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.
=> P chia hết cho 32(2).
Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.
Mà (9,32)=1
=>P chia hết cho 9.32.
=>P chia hết cho 288
=> ĐPCM
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
a + b + c + d + e + g + h = -23
( a + b ) + ( c+ d ) + ( e + g ) + h = -23
<=> 5 + 5 + 5 + h = -23
<=> 15 + h = -23
=> h = -23 - 15
h = - 38
=> a = 5 -( -38)
a = 43
=> b = 5 - 43
b = -38
Còn lại bn tự tìm nha
Mk chỉ lm đc đến đây thôi
a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !
b) ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
c) aaa = a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37
d) aaabbb=a000bx111
111 chia hết cho 37 nên aaabbb chia hết cho 37
e) ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2
nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2
Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2
Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2
b) Ta có :ab= 10*a + b
ba = 10*b + a
=> ab + ba = 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37
e) ab = 10 . a+b
ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)
=> ab‐ba chia hết cho 9