K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=2^{2^{2n}}+5\)

\(=2^{4n}+5\)

\(=2^{\left(3+1\right)\cdot n}+5\)

\(=2^{B\cdot\left(3+1\right)}+5\)

\(=2^{3k+1}+5\)

\(=8^k\cdot2-2+7\)

\(=2\cdot\left(8^k-1^k\right)+7\)

mà \(2\cdot\left(8^k-1\right)⋮2\left(8-1\right)=2\cdot7\)

và \(7⋮7\)

nên \(2\cdot\left(8^k-1^k\right)+7⋮7\)

hay \(A⋮7\)

14 tháng 1 2022

B là gì vậy

18 tháng 1 2021

Chào bạn, nếu đề bạn là:

\(2^{22n}+5⋮7\left(n\ge0\right)\) thì nó không đúng với $n=0.$

Nếu đề bạn là \(2^{22}n+5⋮7\) vì nó vẫn không đúng với $n=0.$

Nhờ bạn check lại đề và gõ công thức toán để người đọc còn hiểu ý bạn muốn hỏi gì.

17 tháng 1 2021

Phản ví dụ: Cho n = 0 ta có: 222.0 + 5 = 1 + 5 = 6 \(⋮̸\) 7 

Nếu đề là A = 222n + 5 thì thay n = 0 ta được:

A = 222.0 + 5 = 5 \(⋮̸\) 7

Vậy đề sai :v

3 tháng 3 2018

Sử dụng đồng dư nha bn

Ta có: \(3^{2n+1}+2^{n+2}\)

\(=9^n\cdot3+2^n\cdot4\)

Mặt khác: \(9\equiv2\)(mod 7)

Suy ra: \(VT\equiv2^n\cdot3+2^n\cdot4=2^n\left(3+4\right)=7\cdot2^n\)(mod 7)

Vậy ..............

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

c: \(1^3+7^3+3^3+5^3\)

\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)

\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)