Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\)
b) Đặt \(x=\sqrt{2006}-\sqrt{2005},y=\sqrt{2006}+\sqrt{2005}\)
Ta có : \(\frac{1}{x}=\frac{1}{\sqrt{2006}-\sqrt{2005}}=\frac{\sqrt{2006}+\sqrt{2005}}{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}\)
\(=\sqrt{2006}+\sqrt{2005}=y\)
Vì \(y=\frac{1}{x}\) nên hai số này là nghịch đảo của nhau
a) xét \(VT=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-\sqrt{3}^2=4-3=1\)
mà \(VT=1\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
b) (lí thuyết) :nếu 2 số nghịch đảo với nhau thì có tích bằng 1 và ngược lại,nếu 2 số có tích bằng 1 thì 2 số đó là nghịch đảo của nhau
Xét \(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)=2006-2005=1\)
\(\Rightarrow\left(\sqrt{2006}-\sqrt{2005}\right)và\left(\sqrt{2006}+\sqrt{2005}\right)\)là 2 số nghịch đảo với nhau(đpcm)
NHỚ TICK CHO MÌNH NHA !!
MÌNH TRẢ LỜI ĐẦU TIÊN ĐẤY
Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé
a)
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2^2-\sqrt{3}^2\)
\(=4-3\)
\(=1\)
b)
Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1
Ví dụ
\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )
\(\frac{a}{b}.\frac{b}{a}=1\)
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)
\(=\sqrt{2006}^2-\sqrt{2005}^2\)
\(=2006-2005\)
\(=1\)
=> Đpcm
\(\left(x-\sqrt{11}\right)^2=0\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
\(\left(x-\sqrt{11}^2=0\right)\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
Từ hệ thức số (3) ta có
\(bc=ah\Rightarrow b^2c^2=a^2h^2\Rightarrow b^2c^2=\left(b^2+c^2\right)h^2\Rightarrow\dfrac{1}{h^2}=\dfrac{b^2+c^2}{b^2c^2}\Rightarrow\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Bài 1:
a: \(=\sqrt{225}=15\)
b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)
c: \(=\sqrt{121\cdot36}=11\cdot6=66\)
d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)
g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)
Bài 2:
a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)
b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)
Đặt \(a=\sqrt{2006}-\sqrt{2005}\) , \(b=\sqrt{2006}+\sqrt{2005}\)
Ta sẽ chứng minh \(a=\frac{1}{b}\)
Ta có : \(a=\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}\)
\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{b}\)
Vậy a và b là hai số nghịch đảo.
Đầu tiên nhắc lại định nghĩ hai số nghịch đảo: Hai số được gọi là nghịch đảo nếu tích của chúng bằng 1.
Vd: $ab=1\implies $ a và b là hai số nghịch đảo của nhau và ngược lại nếu a và b là hai số nghịch đảo của nhau thì $ab=1$.
Áp dụng vào bài toán trên ta có: $(\sqrt{2006}-\sqrt{2005})(\sqrt{2006}-\sqrt{2005})=1\implies $ hai số trên là nghịch đảo của nhau.
Nếu tích của 2 số khác nhau bằng 1 thì 2 số đó là số nghịch đảo của nhau
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)\)
= 2006-2005
=1 ( đpcm)
Số nghịch đảo của 3/7 là 7/3
Số nghịch đảo của 6 là 1/6
Số nghịch đảo của 1/3 là 3
Số nghịch đảo của -1/12 là -12
Số nghịch đảo của 0,31=31/100 là 100/31
VT = = 4 - 3 = 1 = VP
Vậy: 2 - 3 2 + 3 = 1