Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3^1+3^2+...+3^{30}\)
\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)
\(S=1+3.10+3^2.10+...+3^{28}.10\)
Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0
\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1
=> Chữ số tận cùng của S là 1.
3S = 3+32+33+.....+350
3S-S=[3+32+33+.....+350 ] - [1+3+32+....+349 ]
2S=350-1
S=[ 350-1 ]:2
\(3S=3+3^2+3^3+...+3^{31}\)
\(\Rightarrow2S=3S-S=3^{31}-1\)
\(\Rightarrow S=\frac{3^{31}-1}{2}\)
Dễ thấy 331 = 34.7+3 = 34.7 + 33 = (...1) + (...7) = (...8)
Do đó \(S=\frac{\left(...8\right)-1}{2}=\frac{\left(...7\right)}{2}=...5\) có tận cùng là 5
ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương
\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp
Ta có: 31 = ...3
32 = ..9
33 = ..7
34 = ...1
35 = ...3
Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.
Mà 20 : 4 = 5 ( không dư)
=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.
Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.
Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.
S = 1 + 3 + 32 + 33 +...+ 320
3S= 3.(1+3+32+33+....320)
3S= 3+32+33+...+320+ 321
3S-S=321-1
2S=321-1
S=321- 1 / 2
321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi
a) S = 1 + 3 + 32 +...+ 348 + 349
=> 3S = 3 + 32 + 33 +...+ 348 + 349 + 350
=> 3S - S = 350 - 1
=> S = \(\frac{3^{50}-1}{2}\)
Vậy S = \(\frac{3^{50}-1}{2}\)
b) Câu này hơi khó!
Ta có công thức :
\(n^0+n^1+n^2+...+n^x=\frac{n^{x+1}-1}{n-1}\)
\(\Rightarrow3^0+3^1+3^2+....+3^{30}=\frac{3^{31}-1}{3-1}=308836698141963\)
b) Vậy chữ số tận cùng của \(S\)là 3.
c) Ta có thể nhận thấy số chính phương bằng chữ số tận cùng.
Ta có: 12 = 1 ( chữ số tận cùng )
22 = 4 ( ........................ )
32 = 9 ( ........................ )
42 = 6 (.........................)
52 = 5 (.........................)
62 = 6 ; 72 = 9; 82 = 64; 92 = 81
=> Không có số tự nhiên nào lũy thừa lên có chữ số tận cùng là 3. Vây S không phải là số chính phương.
Ta có: S = 1 + 31 + 32 + 33 +...+ 330
=> 3S = 3 + 32 + 33 + 34 + ...+ 331
=> 3S - S = (3 + 32 + 33 + 34 + ...+ 331) - (1 + 31 + 32 + 33 +...+ 330)
=> 2S = 331 - 1
Lại có: 3311 = (34)7 . 33 = (...1)7 . 27 = (...1) .27 = (...7) . 27 = (...7) => 2S có c/s tân cùng là; 7 - 1 = 6
=> 3S có chữ số tận cùng là 3 hoặc 8 mà chính phương ko có chữ số tận cùng là 3 hoặc 8
=> 3S ko phải chính phương
Câu a mình không biết =>
Ta có :
\(S=\left(...1\right)+\left(...3\right)+\left(...9\right)+\left(...7\right)+\left(...1\right)+....+\left(...7\right)+\left(...1\right)+\left(...3\right)\)
\(=\left[\left(...1\right)+\left(...3\right)+\left(...9\right)+\left(...7\right)\right]+...+\left[\left(...1\right)+\left(...3\right)+\left(...9\right)+\left(...7\right)\right]+\left(...1\right)+\left(...3\right)\)\(=\left(...0\right)+\left(...0\right)+...+\left(...0\right)+\left(...1\right)+\left(...3\right)\)
\(=\left(...4\right)\)
Do đó S có tận cùng là 4.
Đáp số : 4.
Cộng tác viên Trần Thùy Dung làm dài quá. Tớ có cách khác
S=1+31+32+...+330
S=(1+31+32+33)+(34+35+36+37)+...+(328+329+330)
S=(1+32)+(31+33)+(34+36)+(35+37)+...+(328+330)+329
S=10+3(1+32)+34(1+32)+35(1+32)+...+328(1+32)+329
S=10+3.10+34.10+35.10+...+328.10+329
S=10(1+3+34+35+...+328)+329
Ta thấy chữ số tận cùng của S= chữ số tận cùng của 329, vì biểu thức đứng trước 329 tận cùng là 0
329=(34)7.3=817.3=A7.3=B3
Vậy tận cùng của S là 3
\(S=1+3+3^2+...+3^{59}\)
\(3S=3+3^2+3^3+...+3^{60}\)
=> \(S=\frac{3^{60}-1}{2}\)
3^4 đồng dư với 1 ( mod 10) => 3^60 đồng dư với (3^4)^15 đồng dư với 1^15 đồng dư với 1 ( mod 10)
=> 3^60 - 1 có tận cùng là 0 => S có tận cùng là 5