Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)
\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)
Do đó :
\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)
\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)
\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)
\(\Rightarrow\)\(a=b=c\)
\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)
\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)
\(\Rightarrow\)\(a=b=c\)
\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)
Chúc bạn học tốt ~
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)
Suy ra a = b =c =d
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Dễ mà!
Mink gợi ý nhé
Bạn phải CM thế nào cho các chữ số của chúng là 1 sau đó suy ra
Fan TOKUDA điểm Danh
-Minh DZ-
abc= ab + bc + ca
100a + 10b + c= 11a + 11b + 11c
89a = 10b + c
=> 10b + c \(⋮\)89 (1)
Ta có: \(1\le c\le9\)(c là chữ số)
\(1\le b\le9\Rightarrow10\le10b\le90\)
\(\Rightarrow11\le10b+c\le99\)(2)
Từ (1) và (2) suy ra: 10b + c= 0 hoặc 10b + c= 89
10b + c= 0 => a=0 (vô lý)
=> 10b + c= 89
=> a=1
Ta có: 10b + c= 89
Do b;c là số có 1 chữ số(khác 0)=> b=8; c=9
Vậy a=1;b=8;c=9
Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)
\(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)
\(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)
Vậy M=1