Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a+b = 9
=> (a+b)2 = 81
a2 + 2ab + b2 = 81
=> a2 - 2ab + b2 + 4ab = 81
(a-b)2 + 4ab = 81
(a-b)2 + 80= 81
(a-b)2 = 1 = 12 = (-1)2
=> a-b = 1 hoặc a-b = -1
=> (a-b)2015 = 12015 = 1
(a-b)2015 = (-1)2015 = -1
KL:...
a + b = 9 => ( a + b )2 = 81
=> a2 + 2ab + b2 = 81
=> a2 + 2.20 + b2 = 81
=> a2 + b2 + 40 = 81
=> a2 + b2 = 41
Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1
=> ( a - b )2 = 1
=> a - b = { 1; -1 }
mà a > b => a - b = 1
=> ( a - b )2015 = 12015 = 1
Vậy,......
ta có a+b=9
=>(a+b)^2=81
=>(â-b)^2+4ab=81
=>(a-b)^2=80-4.20
=>(a-b)^2=80-81
=>(a-b)^2=(-1)
mà a<b nên a-b<0
=> a-b = -1
vậy (a-b)^2011 =(-1) ^ 2011=(-1)
Ta có : \(a+b=9\Leftrightarrow a^2+b^2+2ab=81\Rightarrow a^2+b^2+40=81\)
\(\Rightarrow a^2+b^2=41\Rightarrow a^2+b^2-2ab=41-40=1\)
\(\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=-1\left(a< b\right)\)
\(\Rightarrow\left(a-b\right)^{2011}=-1^{2011}=-1\)
a) mk chỉnh đề:
Chứng minh: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (1)
hoặc \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (2)
BÀI LÀM
TH1:
\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VP\) (đpcm)
TH2:
\(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2=VT\) (đpcm)
b) \(a+b=9\)\(\Rightarrow\)\(a=9-b\)
Ta có: \(ab=20\)\(\Rightarrow\)\(\left(9-b\right).b=20\)
\(\Leftrightarrow\)\(b^2-9b+20=0\)
\(\Leftrightarrow\)\(\left(b-4\right)\left(b-5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}b=4\\b=5\end{cases}}\)
Nếu \(b=4\)thì: \(a=5\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(5-4\right)^{2011}=1\)
Nếu \(b=5\)thì \(a=4\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(4-5\right)^{2011}=-1\)
a, sửa đề CM: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VT\left(đpcm\right)\)
b, \(a+b=9\Leftrightarrow\left(a+b\right)^2=81\Leftrightarrow\left(a-b\right)^2+4ab=81\Leftrightarrow\left(a-b\right)^2=81-4.20=1\Leftrightarrow a-b=\pm1\)
Với \(a-b=1\Rightarrow\left(a-b\right)^{2011}=1\)
Với \(a-b=-1\Rightarrow\left(a-b\right)^{2011}=-1\)
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Mà đẳng thức trên xảy ra dấu =
\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)
Bài kia tí nghĩ nốt, khó v
Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)
\(F=a^3+a^2-b^3+b^2+ab\)
\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)
\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)
\(F=2\left(a^2+ab+b^2\right)\)
\(F=2\left(a^2-2ab+b^2+3ab\right)\)
\(F=2\left(\left(a-b\right)^2+3ab\right)\)
\(F=2\left(1+3ab\right)\)
\(F=2+6ab\)
ta có x+y+z=0
=> \(\left(x+y+z\right)^2=0\)
\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)
\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)
\(< =>x^2+y^2+z^2=0\)
\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)
thay x=y=z=0 vào
\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)
\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)
\(K=1+0+1=2\)
\(\)
\(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow\left(2a^2+2b^2+2c^2\right)-\left(2ab+2bc+2ca\right)=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\)\(\Rightarrow a-b=b-c=c-a=0\)
\(\Rightarrow P=\left(a-b\right)^{2015}+\left(b-c\right)^{2016}+\left(c-a\right)^{2017}=0\)