K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Bài 1:

1 (x+3)2=x2+6x+9

2

a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3

b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x

Bài 2:

a, x2-25x=0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)

b, (4x-1)2-9=0

\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)

\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)

\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)

\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)

Bài 3:

a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2

b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)

c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)

Bài 4:

a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)

=2x-1/2 + 2/3y

b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho

Bài 5 :

b, A = x(2x-3)

A= 2x2-3x

A= 2(x2-3/2x)

A= 2(x2-2x3/4+9/16-9/16)

A=2[(x-3/4)2-9/16]

A=2(x-3/4)2-9/8

A=2(x-3/4)2+(-9/8)

Vì (x-3/4)2 \(\ge\)0 \(\forall x\)

-> 2(x-3/4)2 \(\ge0\forall x\)

-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)

Vậy MinA= -9/8

6 tháng 1 2017

Bài 1:

1. Khai triển hằng đẳng thức

(x+3)2 = x2+6x+9

2. Thực hiện phép tính

a) 2x2(3x-5x3)+10x5-5x3

=6x3-10x5+10x5-5x3

=x3

b)(x+3)(x2-3x+9)+(x-9)(x+3)

=(x3+27)+(x2+3x-9x-27)

=x3+27+x2+3x-9x-27

=x3+x2-6x

Bài 2:

a) x2-25x=0

\(\Leftrightarrow\)x(x-25)=0

\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)

Vậy x=0 hoặc x=25

b)(4x-1)2 - 9=0

\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0

\(\Leftrightarrow\)(4x+2)(4x-4)=0

\(\Leftrightarrow\)2(2x+1)(2x-2)=0

\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)

Vậy x=1 hoặc x=\(\frac{-1}{2}\)

Bài 3:

a) 3x2-18x+27

=3(x2-6x+9)

=3(x-3)2

b) xy-y2-x+y

=(xy-y2)-(x-y)

=y(x-y)-(x-y)

=(x-y)(y-1)

c) x2-5x-6

=x2-6x+x-6

=(x2-6x)+(x-6)

=x(x-6)+(x-6

=(x-6)(x+1)

Bài 4:

a) (12x3y3-3x2y3+4x2y4) : 6x2y3

=x2y3(12x-3+4y): 6x2y3

=(12x-3+4y) : 6

= (12x : 6)-(3 : 6)+(4y : 6)

=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)

b) (6x3-19x2+23x-12) : (2x-3)

=(3x2-5x+4)(2x-3) : (2x-3)

=3x2-5x+4

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

22 tháng 12 2018

Theo đề bài ta có : \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+4ab^2c+4abc^2+4a^2bc\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\)

Thế(2) vào (1) Ta được \(2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Leftrightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)( ĐPCM)

22 tháng 3 2020

Sửa đề :Chứng minh hằng đẳng thức: ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5

Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\(\implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( đpcm )

4 tháng 4 2020

ta có : ( x - y ) ( x4 + x3y + x2y+xy3+ y4 )

=  x (  x4 + x3y +  x2y2 + xy + y) - y (   x4 + x3y +  x2y2 + xy + y)

= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x2y3 = xy4 - y5

= x5 - y5

=> ( x - y ) ( x4 + x3y + x2y2 + xy3  + y4 )  = x5 - y5  ( đpcm )

đề hơi sai nha bạn 

8 tháng 8 2017

b) \(\dfrac{3}{4}xy+\dfrac{3}{4}x^2y-\dfrac{3}{4}xy^2\Leftrightarrow\dfrac{3}{4}xy+\dfrac{3}{4}xy\left(x-y\right)\Leftrightarrow\dfrac{3}{4}xy\left(x-y+1\right)\)

c) \(x\left(x-2\right)+y\left(2-x\right)\Leftrightarrow x\left(x-2\right)-y\left(x-2\right)=\left(x-y\right)\left(x-2\right)\)

d) \(x\left(3-2x\right)+6-4x\Leftrightarrow x\left(3-2x\right)+2\left(3-2x\right)\Leftrightarrow\left(x+2\right)\left(3-2x\right)\)

8 tháng 8 2017

Nên thay dấu \(\Leftrightarrow\) thành dấu =

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

3 tháng 8 2015

x+y=a+b => (x+y)​​2 ​ = (a+b)​2 <=> x2+y2​+2xy=a​2+b2​+2ab mà x2​+y2=a2+b2 nên ta suy ra xy=ab​

​ta có x3+y3 = (x+y)(x​2​-xy+y2​) thay các dữ kiện đã có ta được x​3+y3​=(a+b)(a2-ab+b​2)=a​3+b3​ điều phải chứng minh

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)