K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Ta có: \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

Hay \(A=\dfrac{-abc}{abc}=-1\)

30 tháng 12 2017

\(a+b+c=0\\ \Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =\dfrac{-abc}{abc}=-1\)

Có chỗ khác sp nha!!!

21 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}=\dfrac{a+b-c+b+c-a+c+a-b}{3a+3b+3c}=\dfrac{a+b+c+\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{3a+3b+3c}=\dfrac{a+b+c}{3\left(a+b+c\right)}=\dfrac{1}{3}\)

Khi đó:

\(\left\{{}\begin{matrix}\dfrac{a+b-c}{3c}=\dfrac{1}{3}\\\dfrac{b+c-a}{3a}=\dfrac{1}{3}\\\dfrac{c+a-b}{3b}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b-3c=3c\\3b+3c-3a=3a\\3c+3a-3b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6c\\3b+3c=6a\\3c+3a=6b\end{matrix}\right.\)Thay vào \(P\)

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(\dfrac{a+b}{a}\right)\left(\dfrac{c+a}{c}\right)\left(\dfrac{b+c}{b}\right)\)

\(27P=3\left(\dfrac{a+b}{a}\right).3\left(\dfrac{c+a}{c}\right).3\left(\dfrac{b+c}{b}\right)\)

\(27P=\left(\dfrac{3a+3b}{a}\right)\left(\dfrac{3c+3a}{c}\right)\left(\dfrac{3b+3c}{b}\right)\)

\(27P=\)\(\dfrac{6c}{a}.\dfrac{6b}{c}.\dfrac{6a}{b}=\dfrac{216abc}{abc}=216\Leftrightarrow P=\dfrac{216}{27}=8\)

22 tháng 10 2017

thank

7 tháng 12 2017

Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi

1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)

\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)

Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)

\(P=\dfrac{2+3+4+5+...+17}{2}\)

\(P=\dfrac{152}{2}=76\)

2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)

15 tháng 12 2017

C1: +Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+c+a}{c+a+b}\)\(=\dfrac{2a+2b+2c}{a+b+c}\)

\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{b}{b}+\dfrac{a}{b}\right)\cdot\left(\dfrac{c}{c}+\dfrac{b}{c}\right)\cdot\left(\dfrac{a}{a}+\dfrac{c}{a}\right)\)

\(=\dfrac{b+a}{b}\cdot\dfrac{c+b}{c}\cdot\dfrac{a+c}{a}\)\(=\dfrac{b+a}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\)\(=2\cdot2\cdot2=8\)

\(\Rightarrow M=8\)

C2:

+)Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b}{c}+1=\dfrac{b+c}{a}+1=\dfrac{c+a}{b}+1\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{b+c+a}{a}=\dfrac{c+a+b}{b}\)

+)Vậy, ta có:

\(\dfrac{a+b+c}{c}=\dfrac{b+c+a}{c}\)\(\dfrac{b+c+a}{a}=\dfrac{c+a+b}{b}\)

\(-\)\(\dfrac{a+b+c}{c}=\dfrac{b+c+a}{c}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{b+c+a}{a}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\) (1)

\(-\)\(\dfrac{b+c+a}{a}=\dfrac{c+a+b}{b}\)

\(\Rightarrow\dfrac{b+c+a}{a}-\dfrac{c+a+b}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\) (2)

\(-\)Mà theo đề bài ta có a,b,c đôi một khác 0 nên:

Từ (1) và(2) ta suy ra được:

\(\rightarrow\)a+b+c=0

\(\Rightarrow a+b=\left(-c\right)\)

\(\Rightarrow b+c=\left(-a\right)\)

\(\Rightarrow c+a=\left(-b\right)\)

+)Ta có:

M= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

=\(\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{c}\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{c}=\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\) =(-1)

Vậy M= \(\left\{{}\begin{matrix}8\\-1\end{matrix}\right.\)

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

14 tháng 12 2017

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Khi đó \(P=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(P=\dfrac{8abc}{abc}=8\)

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)

10 tháng 12 2022

Câu 2

(a+3)(b-4)-(a-3)(b+4)=0

=>ab-4a+3b-12-ab-4a+3b+12=0

=>-8a=-6b

=>a/b=3/4

=>a/3=b/4

21 tháng 11 2016

1/ \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\\ \frac{2x}{3}-3=\frac{2}{5}.\left(-10\right)\)

=> \(\frac{2x}{3}-3=-4\\ \frac{2x}{3}=-4+3\\ \frac{2x}{3}=1\)

=> 2x = 1.3

2x = 3

=> x = 3:2

x = 1,5

vậy x = 1,5