K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2023

Có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0^{\left(1\right)}\)

Lại có:

 \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z^{\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\\z+1=0\end{matrix}\right.\Rightarrow x=y=z=-1\)

Thay \(x=y=z=-1\) vào \(A\), ta được:

\(A=\left(-1\right)^{2000}+\left(-1\right)^{2000}+\left(-1\right)^{2000}\)

\(=1+1+1=3\)

\(\text{#}\mathit{Toru}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{z}=-\left(\frac{1}{x}+\frac{1}{y}\right)\\ \frac{2}{xy}-\frac{1}{z^2}=4\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} \frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\\ \frac{2}{xy}-\frac{1}{z^2}=4\end{matrix}\right.\)

\(\Rightarrow \frac{2}{xy}-\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\right)=4\)

\(\Leftrightarrow -\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=4>0\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}< 0\) (vô lý)

Do đó không tồn tại $x,y,z$ kéo theo không tồn tại giá trị của P

20 tháng 10 2017

\(\left\{{}\begin{matrix}x-2\sqrt{y}+1=0\\y-2\sqrt{z}+1=0\\z-2\sqrt{x}+1=0\end{matrix}\right.\)

Cộng theo vế 3 pt trên ta có:

\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-2\sqrt{z}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2=0\)

Dễ thấy: \(VT=\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2\ge0=VP\)

Xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{y}-1=0\\\sqrt{z}-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{y}=1\\\sqrt{z}=1\end{matrix}\right.\)\(\Rightarrow x=y=z=1\)

20 tháng 10 2017

Suy ra \(A=x^{1000}+y^{1000}+z^{1000}=1+1+1=3\)

18 tháng 2 2019

1. Giải phương trình, hệ phương trình:

a) 2x2 - 5x + 3 = 0

\(\Leftrightarrow2x^2-2x-3x+3=0\)

\(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) x2 - 3x = 0

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}2\left(x+1\right)-5\left(y+1\right)=5\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x+1\right)-15\left(y+1\right)=15\\6\left(x+1\right)-4\left(y+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-11\left(y+1\right)=13\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=\dfrac{-13}{11}\\3\left(x+1\right)-2.\left(-\dfrac{13}{11}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\3\left(x+1\right)=-\dfrac{15}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\x=-\dfrac{16}{11}\end{matrix}\right.\)

Hix ,mệt quá.

18 tháng 2 2019

\(d,\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{163}{y}=-489\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{60}{x}+405=525\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

12 tháng 5 2020

+ \(\left(1\right)\Leftrightarrow x^3+1+2\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^3+1+2\left(y-1\right)^2=0\)

Với \(\forall y\in R\Rightarrow\left(y-1\right)^2\ge0\Rightarrow x^3+1\le0\)

\(\Rightarrow x^3\le-1\Leftrightarrow x\le-1\)(*)

+ \(\left(2\right)\Leftrightarrow x^2y^2-2y+x^2=0\)

\(\Delta'_y=1-x^4\) \(\ge0\) thì \(\left(2\right)\) có nghiệm

\(\Leftrightarrow x^4\le1\Leftrightarrow-1\le x\le1\)(**)

Từ (*) và (**) => \(x=-1\Rightarrow\) Thay vào (1) \(\Rightarrow y=1\)

Vậy \(B=x^2+y^2=\left(-1\right)^2+1^2=2\)

13 tháng 7 2018

Aki Tsuki hattori heiji Akai Haruma