Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: - a/b=c/d=2c/2d => a/b=2c/2d
Áp dụng tỉ lệ thức ta có:
a/b=2c/2d=(a+2c)/(b+2d) (1)
- a/b=c/d=3c/3d =>a/b=3c/3d
Áp dụng tỉ lệ thức ta có:
a/b=3c/3d=(a-3c)/(b-3d) (2)
Từ (1) và (2) =>(a+2c)/(b+2d)=(a-2c)/(b-2d)
a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b) Chứng minh tương tự
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2
a) a/b= c/d => a/b = 2c/2d
áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/b= 2c/ 2d= a+ 2c/ b+ 2d =>a/b= a+2c/ b+2d (đpcm)
b) c/d= a/b => 3c/3d= a/b
áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/b= 3c/ 3d= a+ 3c/ b+3d => a/ b = a+ 3c/ b+ 3d
mà a/ b= c/ d=> c/ d = a+ 3c /b+ 3d(đpcm)