Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Leftrightarrow ca+cb=2ab\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
suy ra \(2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
suy ra \(ab+ab=cb+ca\)
suy a \(ab-cb=ca-ab\)
suy ra \(b\left(a-c\right)=a\left(c-b\right)\)
suy ra \(\frac{a}{b}=\frac{a-c}{c-b}\left(Đpcm\right)\)
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\) (đpcm)
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\)
\(\Rightarrowđpcm\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\Rightarrow\frac{1}{c}=\frac{2a+2b}{4ab}\Rightarrow4ab=2ac+2bc\)
\(\frac{a}{b}=\frac{a-c}{c-b}\Rightarrow ac-ab=ab-bc\Rightarrow2ab=ac+bc\Rightarrow4ab=2ac+2bc\) (chứng minh trên)
Vậy \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow1.2ab=c.\left(a+b\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}=\frac{a}{2ab}+\frac{b}{2ab}=\frac{1}{2b}+\frac{1}{2a}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\text{Vậy }\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)