\(Cho:A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\left(x\ge0;x\ne9\right)\)) Tìm số nguyên x để A là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!

20 tháng 6 2016

Câu 3 :

- Xét x > \(\frac{3}{5}\) thì 2.|5x - 3| - 2x = 10x - 6 - 2x = 8x - 6 = 14

=> 8x = 20

=> x = 2,5

- Xét x < \(\frac{3}{5}\) thì 2.|5x - 3| - 2x = -10x + 6 - 2x = -12x + 6 = 14

=> -12x = 8

=> x = \(-\frac{2}{3}\)

Vậy x = 2,5 hoặc x = \(-\frac{2}{3}\)

20 tháng 6 2016

câu 3:  |5x-3|=x+7 ( đk x\(\ge-7\))

<=> \(\left[\begin{array}{nghiempt}5x-3=x+7\\5x-3=-x-7\end{array}\right.\)<=> x=5/2 hoặc x=-2/3

câu 4: các góc tỉ lệ nên : \(\frac{A}{7}=\frac{B}{5}=\frac{C}{3}\)=> \(\frac{A+B+C}{7+5+3}\)=12

=> A=84=> góc ngoài A=96

B=60=> góc ngoài B=120

C=36 => góc ngoài =144

=> tỉ lệ các hóc ngoài: 4:5:6

25 tháng 11 2019

Ta có:

A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=> \(x\in\left\{16;4;25;1;49\right\}\)

Vậy ...

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)

ĐKXĐ: \(x\in R\)

Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)

Để A là một số nguyên <=>  \(\frac{4}{\sqrt{x}-3}\in Z\)

                                     <=>  \(4⋮\sqrt{x}-3\)

                                     <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)

                                     <=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

                                      <=> \(x\in\left\{16;25;49;4;1\right\}\)