K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

19 tháng 2 2019

\(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)

\(=\frac{3-1}{3}+\frac{9-1}{9}+\frac{27-1}{27}+...+\frac{3^n-1}{3^n}\)

\(=\left(\frac{3}{3}-\frac{1}{3}\right)+\left(\frac{9}{9}-\frac{1}{9}\right)+\left(\frac{27}{27}-\frac{1}{27}\right)+.....+\left(\frac{3^n}{3^n}-\frac{1}{3^n}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^n}\right)\)

Bây giờ ta chỉ cần chứng minh:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^n}< \frac{1}{2}\) là xong!

Thật vậy:\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{n-1}}\)

\(\Rightarrow2B=1-\frac{1}{3^n}\)

\(\Rightarrow B=\frac{1}{2}-\frac{\frac{1}{3^n}}{2}< \frac{1}{2}\) 

Ta có:\(A=n-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^n}\right)\)

\(>n-\frac{1}{2}\left(đpcm\right)\)(bất đẳng thức đổi chiều)

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm

13 tháng 3 2019

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\Rightarrow A=B\text{(đpcm)}\)

13 tháng 3 2019

Ta cos ..............

suy ra A=B

14 tháng 7 2017

a, Ta có:

\(\frac{1}{2^3}< \frac{1}{1\cdot2\cdot3};\frac{1}{3^3}< \frac{1}{2\cdot3\cdot4};\frac{1}{4^3}< \frac{1}{3\cdot4\cdot5};...;\frac{1}{n^3}< \frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

Đặt \(A'=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)

\(\Rightarrow\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{\left[n-1\right].n}-\frac{1}{n\left[n+1\right]}\)

\(\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{n\left[n+1\right]}=\frac{1}{2}-\frac{1}{n\left[n+1\right]}=\frac{1}{4}-\frac{1}{2n\left[n+1\right]}< \frac{1}{4}\)

Vậy \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}< \frac{1}{4}\Leftrightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< \frac{1}{4}\)

b,

\(C=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}=1+\frac{1}{3}+1+\frac{1}{3^2}+1+\frac{1}{3^3}+...+1+\frac{1}{3^{98}}\)

\(=\left[1+1+1+...+1\right]+\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

Đặt \(C'=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3C'=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)

\(\Rightarrow3C'-C'=\left[1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right]-\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=1-\frac{1}{3^{98}}\)

\(\Rightarrow C'=\frac{1-\frac{1}{3^{98}}}{2}< 1\)

\(\Rightarrow98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}< 98+1=99< 100\)

\(\Rightarrow\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)

c,

\(D=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{39}}\)

\(4D=5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\)

\(4D-D=\left[5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\right]-\left[\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}+\frac{5}{4^{39}}\right]\)

\(3D=5-\frac{5}{4^{39}}\Leftrightarrow D=\frac{5-\frac{5}{4^{39}}}{3}< \frac{5}{3}\)

Vậy:...........

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

29 tháng 5 2015

Ta có \(A<\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

          \(A<\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

         \(A<\frac{1}{4}+\frac{1}{2}-\frac{1}{100}<\frac{3}{4}\)  

8 tháng 4 2016

đặt B=1/2.3+1/3.4+...+1/49.50

=1/1.2+1/2.3+1/3.4+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)

từ (1),(2),(3) =>A<2

8 tháng 4 2016

Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)

=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)

=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)

=> \(A<2-\frac{1}{50}\Rightarrow A<2\)

Vậy A nhỏ hơn 2