K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)

Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)

Dấu "=" xảy ra khi $x=y=2$

19 tháng 2 2018

Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)

Áp dụng AM­GM ta có:

(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6

...............

30 tháng 8 2018

ai giúp mik vs huhu

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

27 tháng 10 2019

Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok! 

Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)

\(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)

\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)

P/s: Lâu ko làm nên cũng ko chắc đâu nhé!

9 tháng 4 2017

Áp dụng BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ta có: 

\(\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge9\)

Đẳng thức xảy ra khi \(x=y=z=1\)