Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt : \(x^2-4x+1=0\Leftrightarrow x^2+1=4x\)(1)
\(\Leftrightarrow\left(x^2+1\right)^2=16x^2\Leftrightarrow x^4+2x^2+1=16x^2\Rightarrow x^4+1=14x^2\)(2)
\(\Leftrightarrow\left(x^2+1\right)^3=64x^3\Leftrightarrow x^6+3x^4+3x^2+1=64x^3\)
\(\Leftrightarrow x^6+3x^2\left(x^2+1\right)+1=64x^3\Leftrightarrow x^6+12x^3+1=64x^3\)
\(\Rightarrow x^6+1=52x^3\)(3)
Thay (1);(2);(3) vào T ta dược :
\(T=\left(\frac{x^2+1}{x}\right)^2+\left(\frac{x^4+1}{x^2}\right)^2+\left(\frac{x^6+1}{x^3}\right)^2\)
\(=\left(\frac{4x}{x}\right)^2+\left(\frac{14x^2}{x^2}\right)^2+\left(\frac{52x^3}{x^3}\right)^2=4^2+14^2+52^2=2916\)
Ta có:
\(x^2-4x+1=0\)
\(\left(x-2\right)^2-4+1=0\)
\(\left(x-2\right)^2=3\)
\(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
TH1: \(x=2+\sqrt{3}\) => P=...........(bạn thế vào rồi tự tính nhé)
TH2: \(x=2-\sqrt{3}\) => P=...........(bạn thế vào rồi tự tính nhé)
1: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{16}{x+2}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x+1\right)}{x^2+x+1}\)
2: Để B=0 thì -x-1=0
hay x=-1(nhận)
giải
a)4x^2-20x-(4x^2+3x-4x-3)=5
4x^2-20x-4x^2-3x+4x+3=5
-19x+3=5
-19x=5-3
-189x=2
x=-2/19
mik giải luôn đó chứ ko viết đầu bài đâu
c)
2x(x-3)-2(x^2-4)=4
2x^2-6x-2x^2+8=4
-6x+8=44
-6x=4-8
-6x=-4
x=2/3
\(x^2+4x+1=0\)
\(\Rightarrow x^2+4x+4-3=0\)
\(\Rightarrow\left(x+2\right)^2-3=0\)
\(\Rightarrow\left(x+2+\sqrt{3}\right)\left(x+2-\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}-2\\x=\sqrt{3}-2\end{matrix}\right.\)
Thay vào pt rồi tính