K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Biến đổi M, ta được

M =  4 x 2 y 2 x 2 + y 2 + x 2 y 2 + y 2 x 2 =  4 x y + y x 2 + x y 2 + y x 2

Đặt  a = x y ; b = y x  ta được ab = 1, suy ra  a 2 + b 2 ≥ 2

Từ đó ta có

M =  4 a + b 2 + a 2 + b 2 =  4 a 2 + b 2 + 2 + a 2 + b 2 + 2 4 + 3 a 2 + b 2 + 2 4 - 2  ≥ 2 + 3 – 2 = 3

Dấu "=" xảy ra <=> a = b = ±1 <=> 

10 tháng 4 2019

Ta có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

^^

16 tháng 6 2016

Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\). Ta có:

\(A=3\left(t^2-2\right)-8t=3t^2-8t-6\)nên:

\(A\ge-10\Leftrightarrow3t^2-8t-6\ge-10\Leftrightarrow3t^2-8t+4\ge0\Leftrightarrow\left(t-2\right)\left(3t-2\right)\ge0\), luôn đúng do:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\)với \(x,y\) cùng dấu và \(t\le-2\) với \(x,y\)khác dấu.

Dấu "=" xảy ra khi \(t=2\Leftrightarrow x=y.\)

12 tháng 2 2017

cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)

\(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)

áp dụng BĐT trên theo chiều ngược lại:(x,y dương)

\(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)

do đó \(M\le\frac{1}{2}xy.4=2xy\)

\(xy\le1\Rightarrow M\le2\)

dấu = xảy ra khi x=y=1

16 tháng 11 2016

Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)

Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)

Theo đề bài có

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)

Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)

\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)

\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)

\(\Leftrightarrow-0,5\le2013-A\le0,5\)

\(\Leftrightarrow2012,5\le A\le2013,5\)

Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)

Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)

23 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

3 tháng 5 2018

Ta có :

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)

\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)

5 tháng 6 2018

Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??

6 tháng 4 2021

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)

\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)

Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2

19 tháng 4 2021

Cách giải như sau

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1

=x2+3x+1x =x2−x+14 +4x+1x +14 

=(x−12 )2+4x+1x +14 

Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy minA=4+14 =174 <=> x = y = 1/2

          HOK TỐT

22 tháng 6 2017

Với x, y thực dương áp dụng BĐT Cauchy ta có:

\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)

\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)

\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)

Vậy Pmin = 10 tại x = y.

21 tháng 6 2017

áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)

x2+y2\(\supseteq\)2xy

nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10

dấu = xảy ra\(\Leftrightarrow\)x=y