Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT )
=> DE là đường trung bình của tam giác MNP
=> DE = NP/2 (1)
CMTT : DG = MQ/2 (2)
và FG = NP/2 (3)
và EF =MQ/2 (4)
Từ (1), (2), (3), (4), Mà NP = MQ ( GT )
=> DE = EF = FG= GD
Xét tứ giác DEFG có :
DE = EF = FG= GD ( CMT )
=> DEFG là hình thoi
Vậy DEFG là hình thoi
Bạn tự vẽ hình nha
Câu b)
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT )
=> DE là đường trung bình của tam giác MNP
=> DE // NP
CMTT : DG // MQ
Để hình thoi DEFG là hình vuông
<=> góc GDE = 90 độ
<=> GD vuông góc DE
Ta có : DE // NP ( CMT )
và DG// MQ ( CMT )
Để GD vuông góc DE
<=> MQ vuông góc NP
Vậy tứ giác MNPQ có NP = MQ, NP vuông góc MQ thì tứ giác DEFG là hình vuông
a: Xét ΔMNP có
E là trung điểm của MN
F là trung điểm của NP
Do đó: EF là đường trung bình của ΔMNP
Suy ra: EF//MP và EF=MP/2(1)
Xét ΔMQP có
K là trung điểm của MQ
H là trung điểm của QP
Do đó: KH là đường trung bình của ΔMQP
Suy ra: KH//MP và KH=MP/2(2)
Xét ΔMNQ có
E là trung điểm của MN
K là trung điểm của MQ
Do đó: EK là đường trung bình của ΔMNQ
Suy ra: EK=NQ/2=MP/2(3)
Từ (2) và (3) suy ra KH=EK(4)
Từ (1) và (2) suy ra EF//KH và EF=KH(5)
Từ (4) và (5) suy ra EFHK là hình thoi
a: Xét ΔMNQ có
A là trung điểm của MN
B là trung điểm của MQ
Do đó: AB là đường trung bình của ΔMNQ
Suy ra: AB//NQ và AB=NQ/2(1)
Xét ΔNPQ có
C là trung điểm của QP
D là trung điểm của NP
Do đó: CD là đường trung bình của ΔNPQ
Suy ra: CD//NQ và CD=NQ/2(2)
Từ (1) và (2) suy ra ABCD là hình bình hành