K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

bạn ơi giờ bạn có đáp án chưa cho mình xin ké ạ

DD
25 tháng 12 2022

a) Tứ giác \(AHMK\) có \(\widehat{HAK}=\widehat{MHA}=\widehat{MKA}=90^o\)do đó tứ giác này là hình chữ nhật. 

b) Tứ giác \(AMBE\) là hình thoi do có hai đường chéo vuông góc, cắt nhau tại trung điểm mỗi đường. Do đó \(BM\) song song với \(AE\)\(BM=AE\).

Tương tự \(MC\) song song với \(AF\)\(MC=AF\).

Suy ra \(E,A,F\) thẳng hàng (theo tiên đề Ơ-clit về đường thẳng song song) 

và \(AE=AF\).

Do đó \(E\) đối xứng với \(F\) qua \(A\).

c) \(BC=2AM=10\left(cm\right)\).

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

d) Để hình chữ nhật \(AHMK\) là hình vuông thì \(AM\) là đường phân giác của góc \(\widehat{HAK}\).

Khi đó tam giác \(ABC\) có \(AM\) là đường trung tuyến đồng thời là đường cao nên tam giác \(ABC\) cân tại \(A\).

Vậy tam giác \(ABC\) vuông cân tại \(A\).

e) Gợi ý: Dễ dàng chứng minh được tứ giác \(BEFC\) là hình bình hành (từ hai tứ giác \(BEAM,MAFC\) là hình thoi) suy ra hai đường chéo cắt nhau tại trung điểm mỗi đường, mà lại có \(AM\) là đường trung bình. Từ đó ta suy ra đpcm. 

 

4 tháng 12 2020

Giải thích các bước giải:

 a) xét tứ giác AMEN

góc A =90 *( tấm giác abc vuông tại a 

EM vuông góc vs AM nên góc e =90*

en vuông góc vs ac nên góc n bằng 90 

suy ra tứ giắc AMEN là hình chữ nhật 

b)

vị trí điểm e để tứ giắc AMEN là hình chữ nhật là  E là trung điểm cạnh BC

C )

xét tam giác IEK có 

AN//EI (AN//EM

N là trung điểm của EK ( E đx vs  M qua N

suy ra I đx vs K qua A

Chúc bạn học tốt nhé! ^^

6 tháng 1 2021

Cj ơi

26 tháng 12 2019

23456+9867[67453+987875

26 tháng 12 2019

gọi L là giao điểm của BD và AC.

Có: BL=LD, AL=LC =>  ABCD là hình bình hành.

Lại có ^A=90 =>  ABCD là HCN (ĐPCM)

b/ xét tam giác BCI và IED có:

BC=DE(.....)

^BCI = ^IDE=90 độ

CI = ID (.....)

=> tg BCI = tg IDE (c,g,c)

=> BI = IE (ĐPCM)