Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có EBFA, FAGD, GDHC đều là hình hành. Vậy BECH cũng là hình bình hành.
Vậy E đối xứng với H qua N.
Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.
Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).
Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.
Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).
Khi đó ta có:
\(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)
Vậy ta đã chứng minh xong bài toán.
ABCDIKEFNM----
a) Vì ABCD là hcn => AB//CD; AB=CD
Mà E,F lần lượt là trung điểm của AB và CF
=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC
=> EA=FC;EA//FC
Do đó AECF là hbh ( 2 cạnh đối // và = nhau)
b)
Vì ABCD là hcn => AB//CD; AB=CD
Mà E,F lần lượt là trung điểm của AB và CF
=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF
=> EA=DF;EA//DF
=> AEFD là hbh ( ( 2 cạnh đối // và = nhau)
Lại có: ^ADF=90o ( ABCD là hcn)
Do đó: AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)
c) Vì A đối xứng với N qua D (gt)
=> AN là đường trung trực của ^MAF
=> MA=AF (1)
Vì M đối xứng với F qua D
<=>MF là đường trung trực của ^AMN
=>MA=MN (2)
<=> FM là đường trực của ^AFN
=>AF=NF (3)
Từ (1);(2) và (3) => AM=MN=NF=AF
Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)
d) ngu câu hình cuối nên bỏ đi để làm n'
mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ
Xét tứ giác AB'CO, có AE=EC, OE=EB' =>AB'CO là hình bình hành=>AB'//CO và AB'=CO (1)
Tương tự, A'B //CO và A'B=CO (2)
Từ (1) và(2) => AB'//A'B và AB'=A'B =>AB'A'B là hình bình hành => AA' và BB' cắt nhau tại trung điểm mỗi đường(*)
Tương tự, BB' và CC' cắt nhau tại trung điểm mỗi đường(**)
Từ (*0 và (**) => AA',BB',CC' đồng quy
a, Vì M là trung điểm AC và BE nên ABCE là hbh
b, Vì ABCE là hbh nên AE//BC;AE=BC(1)
Vì N là trung điểm AB và CF nên ACBF là hbh
Do đó AF//BC;AF=BC(2)
Từ (1)(2) ta được AE trùng AF và AE=AF
Vậy E đx F qua A