Cho tam giác vuông ABC( A ^  = 90°). Lấy M bất kì...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M đối xứng E qua AB

=>AB là đường trung trực của ME

=>AB\(\perp\)ME tại I và I là trung điểm của ME

Ta có: M đối xứng F qua AC

=>AC là đường trung trực của MF

=>AC\(\perp\)MF tại K và K là trung điểm của MF

Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Ta có: AKMI là hình chữ nhật

=>AK//MI và AK=MI; KM//AI và KM=AI

Ta có: MI//AK

I\(\in\)ME

Do đó: IE//AK

Ta có: AK=IM

IM=IE

Do đó: AK=IE

Ta có: AI=MK

MK=KF

Do đó: AI=KF

Ta có: AI//MK

K\(\in\)MF

Do đó: AI//KF

Xét tứ giác AKIE có

AK//IE

AK=IE

Do đó: AKIE là hình bình hành

=>KI//AE và KI=AE

Xét tứ giác AIKF có

AI//KF

AI=KF

Do đó: AIKF là hình bình hành

=>KI//AF và KI=AF

Ta có: KI//AF

KI//AE

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

Ta có: KI=AE

KI=AF

Do đó: AE=AF

mà E,A,F thẳng hàng

nên A là trung điểm của EF

20 tháng 7 2015

Một bài đã làm không xong mà bạn ra hai bài thì ............

28 tháng 9 2018

Bài 1: Con tham khảo tại câu dưới đây nhé.

Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath

22 tháng 9 2018

https://olm.vn/hoi-dap/question/1311100.html

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

hay AE=AD(1) và BD=BE

Ta có: D và F đối xứng nhau qua AC(gt)

nên AC là đường trung trực của DF

hay AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔAEB và ΔADB có 

AE=AD(cmt)

AB chung

BE=BD(cmt)

Do đó: ΔAEB=ΔADB(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có

AD=AF(cmt)

AC chung

CD=CF(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)