K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021
a, AB là tiếp tuyến của đường tròn (O) ⇒AB vuông góc OB ⇒ΔAOB vuông tại B +, AO²=AB²+BO² (pytago) AB²=5²-3²=16 ⇒AB=4cm +, BO²=OH.OA (hệ thức lượng) ⇒OH=3²/5=1,8cm +, Sin OAB=OB/OA=3/5 ⇒Góc OAB=40°58' +, ΔODH vuông tại H ⇒OD²=OH²+DH² ⇒DH=3²-1,8²=5,76 ⇒DH=2,4 +, BD=2DH=4,8 b. Ta có OH là phân giác góc BOD (do ΔOBD cân tại O, OH là đg cao đồng thời là cân giác) mà A€OH ⇒OA là phân giác của BOC ⇒góc AOB=góc AOD +, ΔABO và ΔADO có OB=OD=R AO chung ​góc AOB=góc AOD ⇒ΔABO=ΔADO (c.g.c) ⇒Góc ABO=góc ADO=90° ⇒AD vuông góc OD ⇒AD là tiếp tuyến c. B, M, D cùng € 1 đg tròn. Đg kính BM ⇒góc BDM=90° ⇒BD vuông góc DM Mà BD vuông góc OA ⇒MD//OA d. Ta có AB=AD (t/c 2 t² cắt nhau) ND=NM (t/c 2 t² cắt nhau) mà AN=AD+DN ⇒AN=AB+MN AHDI là hcn là vô lí (hình vẽ)

Bài tập Tất cả

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng 

13 tháng 6 2016

đây là hình nhé, để cung cấp cho cách giải:

 
A) 

Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

13 tháng 6 2016

B) 

Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

14 tháng 9 2021

a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)

\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\) 

\(\Delta=25-4\left(-1\right)=29>0\)

\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)

b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)

c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)

7 tháng 6 2018

a) tự làm

b) ta có pt hoành độ giao điểm của (P) và đường thẳng d:

\(x^2=2x+3m\Leftrightarrow x^2-2x-3m=0\) (1)

(P) tx (d) tại đúng 1 điểm <=> pt (1) có nghiệm kép

<=> \(\Delta'=0\Leftrightarrow1+3m=0\Leftrightarrow m=-\dfrac{1}{3}\)

Kl: m= -1/3

18 tháng 7 2018

Hình tự vẽ nhá ^^

Chứng minh được \(tgAMHN\) là hình chữ nhật \(\Rightarrow MN=AH\)

Chứng minh được \(\Delta HMB~\Delta CHA\)(G-G) \(\Rightarrow\frac{BM}{AH}=\frac{HB}{AC}\)

Chứng minh được \(\Delta CHN~\Delta AHB\Rightarrow\frac{CN}{AH}=\frac{AM}{HB}\)

Chứng minh được \(\Delta AMN~\Delta ACB\left(c-g-c\right)\Rightarrow\frac{BC}{MN}=\frac{AC}{AM}\)

\(\Rightarrow\frac{BM.CN.BC}{MN.AH.AH}=\frac{HB.AM.AC}{AC.HB.AH}=1\Leftrightarrow BM.CN.BC=MN^3\)