Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé!
a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)
\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược
\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)
b, Gọi C là trung điểm dây AB ta có C cố định
(d) không qua O nên \(OC\perp AB\)
\(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)
\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM
\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn
Mà O và C cố định
Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)
c, Tứ giác MNOP là hình vuông
\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\)Tam giác OMN vuông cân tại N \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)
\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)
d, từ nghĩ đã...
\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)
cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó
d, Làm tiếp:
Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'
OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))
\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)
\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\) ; \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)
Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)
\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP
Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)
Mặt khác : O , I cùng thuộc nửa mặt phẳng bờ d
Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R
M A B H O N I K C D O'
1) Xét đường tròn tâm O' đường kính AN: Điểm I thuộc (O') => ^AIN=900 => ^NIB=900
Xét tứ giác NHBI: ^NHB=^NIB=900 => Tứ giác NHBI nội tiếp đường tròn (đpcm).
2) Ta có tứ giác AKNI nội tiếp (O') => ^KAI+^KNI=1800 (1)
Tứ giác NHBI nội tiếp đường tròn (cmt) => ^INH+^IBH=1800 (2)
MA và MB là 2 tiếp tuyến của (O;R) => MA=MB => \(\Delta\)AMB cân tại M
=> ^MAB=^MBA hay ^KAI=^IBH (3)
Từ (1); (2) và (3) => ^KNI=^INH
Ta thấy: ^NKI=^NAI (Cùng chắn cung NI)
Theo t/c góc tạo bởi tiếp tuyến và dây cung => NAI=^NBH
=> ^NKI=^NBH. Mà ^NBH=^NIH (Cùng chắn cung HN) => ^NKI=^NIH
Xét \(\Delta\)NHI và \(\Delta\)NIK: ^NIH=^NKI; ^KNI=^INH (cmt) => \(\Delta\)NHI~\(\Delta\)NIK (g.g) (đpcm).
3) ^NIH=^NKI. Mà ^NKI=^NAI => ^NIH=^NAI hay ^NIC=^NAB (4)
^NIK=^NAK (Chắn cung NK). Mà ^NAK=^NBA (Góc tạo bởi tiếp tuyến và dây cung)
=> ^NIK=^NBA hay ^NID=^NBA (5)
Cộng (4) & (5) => ^NIC+^NID = ^NAB+^NBA = 1800 - ^ANB = 1800-^CND
=> ^CID+^CND=1800 => Tứ giác CNDI nội tiếp đường tròn => ^NDC=^NIC
Lại có: ^NIC=^NKI=^NAI => ^NDC=^NAI (2 góc đồng vị) => CD//AI hay CD//AB (đpcm).
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
CÂU 1:
\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)
\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)
\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(A=2\sqrt{3}\)
Đáp án D
Áp dụng hệ thức về cạnh và góc trong tam giác vuông ta có: