K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

a, xét tam giác DEI và tam giác DFI có:

        DE=DF(gt)

       DI cạnh chung

       EI=FI(gt)

=> t.giác DEI=t.giác DFI(c.c.c)

b, vì tam giác DEI=tam giác DFI(câu a) suy ra \(\widehat{DIE}\)=\(\widehat{DIF}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{DIE}\)=\(\widehat{DIF}\)=90 độ 

=> DI\(\perp\)EF

c, dễ rồi, bạn dựa vào định nghĩa trong sgk toán 7, trong đó có nhé

D E F I N

4 tháng 5 2019

xet tam giac DIEva tam giac DIF

   DE=DF(vi DEF la tam giac can)

   DI la canh chung 

   EI=FI

=> tam giac DEI=tam giac DIF

D E F N 1 2 M

a,Tam giác DEN và tam giác DFN có:

DN chung

góc D1=góc D2

DE=DF

=> tam giác DEN=tam giác DFN (c.g.c)

b, Ta có: tam giác DEN=tam giác DFN (cma) => NE=NF

c, Vì DE=DF => tam giác DEF cân tại D, mà DM là tia phân giác

=> DM đồng thời là đường trung tuyến

=> ME=MF

d, Vì tam giác DEF cân tại D, mà DM là đường phân giác và là đường trung tuyến

=> DM đồng thời là đường cao

=> DM vuông góc với EF

e,Vì DM là đường trung tuyến, mà đồng thời là đường vuông góc

=> DM là đường trung trực

f,Đề bài câu f có chút nhầm lẫn bn ơi, phải là tam giác EMN=tam giác FMN

Cách 1: (c.c.c)

Tam giác EMN và tam giác FMN có:

MN chung

EM=MF

NE=NF

=> tam giác EMN=tam giác FMN (c.c.c)

Cách 2: (c.g.c)

Vì DM vuông góc với EF

=> NM -----------------------

=> góc NME = góc NMF =90 độ

Tam giác EMN và tam giác FMN có:

NM chung

góc NME= góc NMF (chứng minh trên)

EM=FM

=> tam giác EMN = tam giác FMN (c.g.c)

a) Xét ∆DEM và ∆DFN ta có 

DE = DF (gt)

DM chung 

EDM = FDM ( DM là phân giác )

=> ∆ DEM = ∆DFN (c.g.c)(dpcm)

b) Vì ∆DEM = ∆DFN(cmt)

=> EM = MF ( tương ứng) 

c) Vì DE = DF (gt)

=>∆ DEF cân tại D 

Mà DM là phân giác 

=> M là trung điểm EF ( tính chất đường phân giác trong ∆ cân )

=> EM = MF(1)

d) Trong ∆ cân DEF có DM là phân giác và là trung tuyến 

=> DM vuông góc với EF(2)

e) Từ (1) và (2) 

=> DM là trung trực EF

f) Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NM chung 

EM = MF 

=> ∆NEM = ∆NFM (c.c.c)

Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NMF = NME (DM là trung trực) 

EM = MF 

=> ∆NEM = ∆NFM (c.g.c) 

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

17 tháng 4 2019

A B C D E H K 1 2

a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:

\(\widehat{A}:chung\)

\(\Delta ABC\)cân => AB = AC ( ĐL )

\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)

 => \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)

b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )

nên \(\Delta AED\)là tam giác cân ( ĐPCM )

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))