K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

14 tháng 12 2018

Bài 2.

-Hình bn tự vẽ nhé!

Bài làm:

a, Có F là trung điểm của AC (gt)

\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)

Xét tam giác ABC ta có:

E là trung điểm của AB (gt)

G là trung điểm của BC (gt)

\(\Rightarrow\)EG là đường trung bình của tam giác ABC

\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)

Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.

mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.

AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)

mà EI song song với BF (gt) (4)

Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.

b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)

mà AE=EB (E là trung điểm của AB)

\(\Rightarrow\)GF=FI.

Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)

\(\Rightarrow\)AGCI là hình bình hành.

mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi

c, Theo b, ta có: AGCI là hình thoi

Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.

Khi đó AG là đường cao của tam giác ABC

Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A

mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.

a: Xét tứ giác ADCH có

M là trung điểm của AC

M là trung điểm của HD

Do đó: ADCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

HE//AD

HE=AD
Do đó:ADHE là hình bình hành

23 tháng 4 2018

Sai đề bài rồi bn.

12 tháng 1 2017

Bạn tự vẽ hình nha !

a) Theo đề, ta có:

N là điểm đối xứng với M qua I

mà I là trung điểm của AC hay I thuộc AC

=> N đối xứng với M qua AC.

b) Xét tam giác ABC có:

BM = CM (gt)

AI = CI (gt)

=> MI là đường trung bình của tam giác ABC

=> MI//AB

mà AB vuông góc với AC

=> MI vuông góc AC

Xét tứ giác ANCM có:

MI = NI (gt)

AI = CI (gt)

=> tứ giác ANCM là hình bình hành có MI vuông góc với AC

=> ANCM là hình thoi

c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A

Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .

Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.

XONG!!! okok

19 tháng 12 2017

Hình học lớp 8

a) Gọi E' là điểm đối xứng với E qua A.

Khi đó ta thấy ngay MA là đường trung bình của tam giác EE'H

Vậy nên MA // HE'.

Kéo dài MA, cắt BC tại K.

Ta thấy rằng \(\widehat{BAC}=\widehat{E'AH}\) (Cùng phụ với góc CAE')

Vậy nên ta có ngay \(\Delta ABC=\Delta AE'H\left(c-g-c\right)\Rightarrow\widehat{AE'H}=\widehat{ABC}\)

Lại có \(\widehat{AE'H}=\widehat{E'AK}\) (Hai góc so le trong)

\(\widehat{E'AK}=\widehat{MAE}\) (Hai góc đổi đỉnh)

Vậy nên \(\widehat{ABC}=\widehat{MAE}\)

Suy ra \(\widehat{ABK}+\widehat{BAK}=\widehat{MAE}+\widehat{BAK}=180^o-\widehat{EAB}=90^o\)

Xét tam giác ABK có \(\widehat{ABK}+\widehat{BAK}=90^o\) nên \(\widehat{AKB}=90^o\Rightarrow MA\perp BC\left(đpcm\right)\)

b) +) Ta có \(MA\perp BC;ON\perp BC\Rightarrow\) MA // ON.

Chứng minh tương tự ta cũng có \(NA\perp EH\)

Khi OE = OH thì tam giác OEH cân tại O, suy ra OM là trung tuyến đồng thời đường cao. Vậy \(OM\perp EH\Rightarrow\) OM // NA

Vậy thì AMON là hình bình hành.

+) Ta có AMON là hình bình hành nên AM = ON.

Lại có \(AM=\dfrac{HE'}{2}=\dfrac{BC}{2}=BN=NC\)

Nên \(NO=NB=NC\Rightarrow\widehat{BOC}=90^o\)

Vậy thì \(\widehat{B_1}=\widehat{C_1}=45^o\)

Ta có \(\widehat{BAC}+\widehat{B_2}+\widehat{B_1}+\widehat{C_2}+\widehat{C_1}=180^o\)

Mà do OA = OB = OC nên \(\widehat{B_2}=\widehat{BAO};\widehat{C_2}=\widehat{OAC}\Rightarrow\widehat{B_2}+\widehat{C_2}=\widehat{BAC}\)

Suy ra \(2\widehat{BAC}=90^o\Rightarrow\widehat{BAC}=45^o\)