K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

Sử dụng các tỉ số lượng giác, tính được:

sinB = 3 5 ; cosB =  4 5 ; tanB =  3 4 ; cotB =  4 3

=> sinA =  4 5 ; cosA =  3 5 ; tanA =  4 3 ; cotA =  3 4

NV
9 tháng 8 2021

Áp dụng định lý Pitago:

\(AB=\sqrt{AC^2+BC^2}=1,5\left(cm\right)\)

\(sinB=\dfrac{AC}{AB}=0,6\) \(\Rightarrow cosA=sinB=0,6\)

\(cosB=\dfrac{BC}{AB}=0,8\) \(\Rightarrow sinA=cosB=0,8\)

\(tanB=\dfrac{AC}{BC}=\dfrac{3}{4}\) \(\Rightarrow cotA=tanB=\dfrac{3}{4}\)

\(cotB=\dfrac{BC}{AB}=\dfrac{4}{3}\) \(\Rightarrow tanA=cotB=\dfrac{4}{3}\)

13 tháng 9 2019

Tương tự câu 1

30 tháng 6 2021

Áp dụng định lí pytago vào Δvuông ABC có:

     AB²=AC²+BC²=0,9²+1,2²=2,25

⇒AB=1,5(cm)

Có góc A và góc B phụ nhau, ta có:

sin B = cosA= AC/AB = 3/5

cos B = sin A = BC/AB = 4/5

tan B = cot A = AC/BC = 3/4

cot B = tan A = BC/AC = 4/3

30 tháng 6 2021

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm

Theo định lí Pitago, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:

Để học tốt Toán 9 | Giải bài tập Toán 9

Bạn tham khảo nha

7 tháng 5 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm

Theo định lí Pitago, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:

Để học tốt Toán 9 | Giải bài tập Toán 9

(Ghi chú: Các bạn nên đổi đơn vị như trên để việc tính toán trở nên dễ dàng hơn.)

22 tháng 4 2021

Giúp mình điii😇

sinA=cosB=0,8sinA=cosB=0,8

cosA=sinB=0,6cosA=sinB=0,6

tgA=cotgB=43≈1,33tgA=cotgB=43≈1,33

cotgA=tgB=0,75cotgA=tgB=0,75.



24 tháng 4 2017

Giải tương tự như VD1:

Đáp số:

2016-11-05_163038

15 tháng 10 2021

\(\sin\widehat{B}=\cos\widehat{A}=\dfrac{AC}{AB}=\dfrac{3}{5}\)

\(\cos\widehat{B}=\sin\widehat{A}=\dfrac{4}{5}\)

\(\tan\widehat{B}=\cot\widehat{A}=\dfrac{3}{4}\)

\(\cot\widehat{B}=\tan\widehat{A}=\dfrac{4}{3}\)

15 tháng 7 2017

Theo định lý Py-ta-go ta có:

Xét tam giác ABC vuông tại C có:

Đáp án cần chọn là: A

14 tháng 9 2017

tam giác ABC ( A=90*)

=> \(AB=\sqrt{BC^2-AC^2}=\sqrt{1,2^2-0,9^2}\approx0,79\)( theo đlý pytago)

=> \(\sin B=\frac{AC}{BC}=\frac{0,9}{1,2}\approx1,14\)\(\Rightarrow\sin B=\cos A\approx1,14\)

\(\Rightarrow\cos B=\frac{AB}{BC}=\frac{0,79}{1,2}\approx0,66\Rightarrow\cos B=\sin A\approx0,66\)

\(\Rightarrow\tan B=\frac{AC}{AB}=\frac{0,9}{0,79}\approx1,139\Rightarrow\tan B=\cot A\approx1,139\)

\(\Rightarrow\cot B=\frac{AB}{AC}=\frac{0,79}{0,9}\approx0,87\Rightarrow\cot B=\tan A\approx0,87\)

14 tháng 9 2017

ĐS: 

.

đúng k nhỉ ??

17 tháng 7 2023

\(BC^2=AB^2+AC^2=36+64=100=10^2\)

\(\Rightarrow BC=10\left(cm\right)\)

\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)

\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)

\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)