K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

c. Xét ∆ADF và ∆EDC có:

AD = DE

∠(ADF) = ∠(EDC) (hai góc đối đỉnh)

⇒ ∆ADF = ∆EDC ( cạnh góc vuông – góc nhọn kề)(1 điểm)

⇒ DF = DC (hai cạnh tương ứng) (0.5 điểm)

21 tháng 9 2017

d. Trong tam giác vuông DEC có DC là cạnh huyên nên DC là cạnh lớn nhất

⇒ DC > DE mà DE = AD ⇒ DC > AD (1 điểm)

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

17 tháng 6 2019

a. Hình vẽ (0.5 điểm)

Xét ∆ABD và ∆EBD có:

∠(ABD) = ∠(DBE)

BD là cạnh chung

 

⇒ ∆ABD = ∆EBD(cạnh huyền – góc nhọn) (1 điểm)

24 tháng 4 2019

thi chua bạn ơi

24 tháng 4 2019

Chưa thi bn ơi

21 tháng 8 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔDAF và ΔDEC có:

DA = DE( chứng minh trên)

∠D1 = ∠D2 ( hai góc đối đỉnh)

∠DAF = ∠DEC = 90º

Suy ra: ΔDAF = ΔDEC (g.c.g) ⇒ DF = DC.

26 tháng 2 2018

ở câu a) tam giác EBC hay tam giác EBD vậy bạn?
 

3 tháng 4 2020

A B C E D F 1 2 1 2 1 2 1 2

Sửa đề: a) CMR : t/giác  ABD = t/giác EBD; c) CMR: DC = DF

CM: a) Xét t/giác  ABD và t/giác EBD

có: AB = BE (gt)

  BD: chung

 \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có: t/giác ABD = t/giác EBD (cmt)

=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)

Mà \(\widehat{A_1}=90^0\) => \(\widehat{E_1}=90^0\)

   => DE \(\perp\)BC

c) Xét t/giác ADF và t/giác EDC

có: AD = DE (vì t/giác ABD = t/giác EBC)

  \(\widehat{A_2}=\widehat{E_2}=90^0\)

 \(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DC = DF (2 cạnh t/ứng)

7 tháng 8 2017

b. Ta có AB = BE ⇒ B nằm trên đường trung trực của AE (0.5 điểm)

Do ∆ABD = ∆EBD nên AD = DE (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AE

Vậy BD là đường trung trực của AE (0.5 điểm)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

loading...  loading...