Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=4+9=13
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>AH=6
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)
b: ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
Tự vẽ hình nhé
a) \(CM:AM.AB=AN.AC\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AH^2=AM.AB\left(HTL\right)\left(1\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(AH^2=AN.AC\left(HTL\right)\left(2\right)\)
`text{Từ (1) và (2)}` \(\Rightarrow AM.AB=AN.AC\left(=AH^2\right)\)
b) \(CM:AM.AN=\frac{AH^3}{BC}\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AH^2=AM.AB\left(HTL\right)\\ \Rightarrow AM=\frac{AH^2}{AB}\left(3\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(AH^2=AN.AC\left(HTL\right)\\ \Rightarrow AN=\frac{AH^2}{AC}\left(4\right)\)
`text{Xét ΔABC vuông tại H (gt), AM là đường cao (gt)}`
\(AB.AC=AH.BC\left(HTL\right)\\ \Rightarrow AH^3.AB.AC=AH^3.AH.BC\\ \Rightarrow AH^3.AB.AC=AH^4.BC\\ \Rightarrow\frac{AH^4}{AB.AC}=\frac{AH^3}{BC}\\ \Rightarrow\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^3}{BC}\\ \Rightarrow AM.AN=\frac{AH^3}{BC}\left(do\left(3\right)\left(4\right)\right)\)
c) `text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(BH^2=BM.BC\left(HTL\right)\Rightarrow BM=\frac{BH^2}{AB}\left(5\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(CH^2=CN.AC\left(HTL\right)\Rightarrow CN=\frac{CH^2}{AC}\left(6\right)\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
Và
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AB^2=BH.BC\left(HTL\right)\\ AC^2=CH.BC\left(HTL\right)\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=BH.CH\\ \Rightarrow AB^3.CH=AC^2.BH\\ \Rightarrow AH^4.CH^2=AC^4.BH^2\\ \Rightarrow AB^3.CH^2.AB=AC^3.BH^2.AC\\ \Rightarrow AB^3.\frac{CH^2}{AC}=AC^3.\frac{BH^2}{AB}\\ \Rightarrow AB^3=CN=AC^3.BM\left(do\left(5\right)\left(6\right)\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
bạn ơi còn câu a với câu c đâu ạ ?