K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)

Tam giác ABC vuông tại A, theo py ta go:

                           \(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)

=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15

TAm giac ABC vuông tại A theo hệ thức lượng 

                           AH.BC = AB.AC => AH=  (AB.AC)/BC =  (9.12)/15 = 7,2cm

                          AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4

                          =>  HC = BC - HB = 15 - 5,4 = 9,6cm

VẬY AH = 7,2 ; BH = 5,4;CH = 9,6 

 

1 tháng 8 2018

Lm sao 16x^2=144 ra x^2=9 vậy bạn

9 tháng 8 2021

Xét tam giác ABC vuông tại A, đường cao A

cosB = \(\frac{AB}{BC}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AB}{12}\Rightarrow AB=\frac{12\sqrt{3}}{2}=6\sqrt{3}\)m

Theo Pytago tam giác ABC vuông tại A 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{144-108}=6\)m

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{36\sqrt{3}}{12}=3\sqrt{3}\)m

9 tháng 8 2021

đường cao AH nhé 

13 tháng 7 2015

A B C H M

Tam giác ABC vuông tại A có AM kà trung tuyến => AM = BC/2 = \(\sqrt{41}\)/ 2

Ta có: \(\frac{AH}{AM}=\frac{40}{41}\) => AH = \(\frac{40}{41}.\frac{\sqrt{41}}{2}=\frac{20\sqrt{41}}{41}\)

Đặt AB = c; AC = b 

=> b.c = AH . BC = \(\frac{20\sqrt{41}}{41}.\sqrt{41}=20\)

Áp dụng ĐL Pi ta go có : b2 + c2 = BC2 = 41

=> (b + c)2 = b2 + c2 + 2bc = 41 + 2.20 = 81 => b + c = 9 (do b; c là độ dài đoạn thẳng nên b ; c > 0  ) => b = 9 - c

Thay vào b.c = 20 ta được (9 - c).c = 20 <=> c2 - 9c + 20  = 0

<=> (c-4)(c - 5) = 0 <=> c = 4 hoặc c = 5

c = 4 => b = 5

c= 5 => b = 4 

Vậy 2 cạnh góc vuông là 4 và 5

13 tháng 7 2015

Thế MR lazy hoặc ai cũng đc vì bài này cũng không khó 

8 tháng 11 2015

\(AH=\sqrt{5};HC=2AH=2\sqrt{5}\)m

Mà Tam giác HAC vuông tại H , Theo DL  py-ta -go

=>\(AC^2=AH^2+HC^2=\sqrt{5}^2+\left(2\sqrt{5}\right)^2=5+20=25\)

=> AC = 5 m

9 tháng 10 2021

undefined

Hai đường chéo AC,BD cắt nhau tại H .Trong tam giác vuông ABD ,ta có :

\(\frac{HD}{HB}=\frac{AD^2}{AB^2}=\frac{4^2}{6^2}=\frac{4}{6}\)

Dễ thấy \(\Delta HDC~\Delta HBA\)nên 

\(\frac{DC}{AB}=\frac{HD}{HB}\)\(=\frac{4}{9}\)\(\Rightarrow\)\(DC\)=\(\frac{4}{9}.6=\frac{8}{3}\)(Cm)

Kẻ đường cao CK của tam giác ABC , dễ thấy KB = AB - DC = 6 -\(\frac{8}{3}\)=\(\frac{10}{3}\)

\(\Rightarrow\)\(BC=\frac{\sqrt{224}}{3}=\frac{2\sqrt{61}}{3}\left(cm\right)\)

28 tháng 2 2016

tam giác AHC vuông cân suy ra AH=HC

xét tam giác AHB có góc AH =90'  tanABH=tan60=\(\frac{AH}{BH}\)=\(\sqrt{3}\)

ta có BH+CH=3+\(\sqrt{3}\)(=BC)

suy ra:\(\frac{AH}{\sqrt{3}}\)+AH=3+\(\sqrt{3}\)

suy ra AH=\(\frac{3+\sqrt{3}}{\frac{1}{\sqrt{3}}+1}\)   suy ra AH=3

29 tháng 4 2021

A B C H 12,5 6

Ta có : \(\frac{S_{AHB}}{S_{AHC}}=\frac{\frac{1}{2}BH.AH}{\frac{1}{2}CH.AH}=\frac{BH}{CH}\)

Xét tam giác ABC vuông tại A có đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH\)mà \(CH=BC-BH=12,5-BH\)

hay \(BH\left(12,5-BH\right)=36\)vô nghiệm 

P/s : bạn kiểm tra lại đề thử xem