K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AD=DE=EC

mà AD+DE+EC=AC=3cm

nên \(AD=DE=EC=\dfrac{3}{3}=1\left(cm\right)\)

Ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=1^2+1^2=2\)

=>\(BD=\sqrt{2}\left(cm\right)\)

Ta có: DC=DE+EC

=>DC=1+1

=>DC=2(cm)

Xét ΔDBE và ΔDCB có

\(\dfrac{DB}{DC}=\dfrac{DE}{DB}\left(\dfrac{\sqrt{2}}{2}=\dfrac{1}{\sqrt{2}}\right)\)

\(\widehat{BDE}\) chung

Do đó: ΔDBE~ΔDCB

=>\(\widehat{DEB}=\widehat{DBC}\)

\(\widehat{AEB}+\widehat{ACB}=\widehat{DBC}+\widehat{ACB}=180^0-\widehat{CDB}\)

Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ADB}=45^0\)

=>\(\widehat{AEB}+\widehat{ACB}=180^0-\widehat{CDB}=\widehat{ADB}=45^0\)

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

b) Ta có: AD+DC=AC(D nằm giữa A và C)

nên DC=AC-AD=3-1=2(cm)

Ta có: DE=AD(gt)

mà AD=1cm(cmt)

nên DE=1cm

Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)

Xét ΔBDE và ΔCDB có 

\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)

\(\widehat{BDE}\) chung

Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)

a) Ta có: AD+DE+EC=AC

mà AD=DE=EC(gt)

nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=1+1=2\)

hay \(BD=\sqrt{2}cm\)

Vậy: \(BD=\sqrt{2}cm\)

27 tháng 3 2019

Ta thấy :

AD=DE=EC =\(\frac{1}{3}AC=1\left(cm\right)\)

Xét tam giác ABC vuông tại A :

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{1+1}=\sqrt{2}\)

b)

Xét:\(\frac{BD}{DE}=\frac{\sqrt{2}}{1}=\sqrt{2}\)

\(\frac{DC}{BD}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{BD}{DE}=\frac{DC}{DB}\)

Xét tam giác BDE và tam giác CDB có

BDC chung

\(\frac{BD}{DE}=\frac{DC}{DB}\)(CMT)

tam giác BDE đồng dạng với tam giác CDB

\(\widehat{DBE}=\widehat{BCD}\)

\(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{DEB}+\widehat{DBE}=\widehat{ADB}\)

mà tam giác ABD vuông tại A có AB=AD=1 (cm)

nên tam giác ABD vuông cân nên ADB=ABD=45 độ

hay \(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{ADB}=45^0\)

28 tháng 11 2019

à hình như bài này mình dell biết làm =)))

3 tháng 3 2016

a) Dễ thấy : \(\Delta ABC\) đồng dạng với \(\Delta DEC\) (g.g) (Góc A = Góc CDE; góc C chung)

b) Từ a => \(\frac{AB}{DE}=\frac{AC}{DC}=\frac{BC}{EC}\)

c) Từ b => DC.BC = EC.AC

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)