K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

28 tháng 1 2022

ABCH??20cm16 cm9 cm

Lg

*Áp dụng định lý py-ta-go ta có: (Δ AHC)

AC2=AH2+HC2

202=AH2+162

400=AH2+256

AH2=144

AH=√144 =12

*Áp dụng định lý py-ta-go ta có: (Δ AHB)

AB2=AH2+BH2

AB2=122+92

AB2=225

AB=√225 =15

 
14 tháng 3 2020

Bài này dạng cơ bản ; bạn nên tự làm ; tránh trường hợp bị mất gốc

HD :

để tính BH em hãy áp dụng đ/lí pytago vào tam giác AHB

để tính AC em hãy áp dụng đ/lí pytago vào tam giác AHC

sau đó em hãy tính BC bằng cách cộng BH  và CH

sau đó em cộng bình phương của AB và AC ; so sánh nó với bình phương của BC

nếu = nhau => tam giác ABC vuông

nếu ko bằng nhau => tam giác ABC ko vuông

15 tháng 3 2020

A B C H

a) Áp dụng định lý Pitago vào tam giác AHB, ta có:

=> AB2 = AH2 + BH2

=> BH2 = 152 - 122

     BH2 = 32

=> BH = 9 cm

Áp dụng định lý Pitago vào tam giác AHC, ta có:

=> AC2 = AH2 + CH2

=> AC2 = 122 + 162

     AC2 = 202

=> AC = 20 cm

BC = BH + HC

BC = 6 + 15

BC = 21 cm

b) Ta có:

AB2 + AC2 = 152 + 202 = 252 = 625

BC2 = 212 = 441

vì 625 khác 441 nên tam giác ABC không vuông

Ta có : BC = BH + HC = 9 + 16 = 25 (cm)

Tam giác ABC vuông tại A nên :

BC= AB2 + AC2

252 = AB2 + 162

=> AB2 = 252 - 202

AB= 625 - 400 = 225 = 152

=> AB = 15 (cm)

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = AH2 + 162

=> AH2 = 202 - 162

AH = 400 - 256 = 144 = 122

=> AH = 12 (cm)

Vậy AB = 15 cm ; AH = 12 cm

12 tháng 3 2020

 Tham khảo link này nek:

https://h.vn/hoi-dap/question/168012.html

# mui #

2 tháng 2 2020

B H A C 20cm 52cm 48cm

a) 

Ta có: BC2=52cm= 5704 (cm)

=> AC2+ AB=482+202=2304+400=2704 (cm)

=> BC2=AC2+AB2=2704(cm)

=> \(\Delta ABC\) là tam giác vuông ở A

đpcm.

b)

Diện tích tam giác ABC là:

48.20:2=480 (cm2)

Độ dài chiều cao AH là:

480.2:52 = 260/13 (cm)

Vậy.....

3 tháng 2 2020

B A C H 20 48 52

a, Ta có : \(BC^2=52^2=2704\)

\(AB^2+AC^2=20^2+48^2=400+2304=2704=52^2\)

Vậy : \(BC^2=AB^2+AC^2\)

Tam giác ABC vuông ở A

b, Ta có : \(S_{ABC}=\frac{1}{2}AB\cdot AC=\frac{1}{2}\cdot20\cdot48=10\cdot48=480\left(cm^2\right)\)

Mặt khác \(S_{ABC}=\frac{1}{2}AH\cdot BC,AH=\frac{2S_{ABC}}{52}=\frac{2\cdot480}{52}\approx18,5\left(cm\right)\)

Phần b bạn dưới làm sai

17 tháng 1 2016

*Bạn tự vẽ hình nhé!

Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:

BC2 = AB2 + AC2

hay BC2 = 202 + 152

=> BC2 = 625 = 252

=> BC = 25 (cm)

Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:

AB2 = AH2 + HB2

=> BH2 = AB2 - AH2

=> BH2 = 202 - 122

=> BH2 = 256 = 162

=> BH = 16 (cm)

Mà H thuộc BC nên H nằm giữa BC

=> BH + HC = BC

=> 16 + HC = 25

=> HC = 25 - 16

=> HC = 9 (cm)

Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.

17 tháng 1 2016

mọi người giúp mk nha

 

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

6 tháng 11 2016

Đầu tiên bạn vẽ hình trc

- Xét tam giác AHB vuông góc tại H, theo định lý py-ta-go ta có:

AB2=AH2+HB2 hay AB2=122+52=169↔AB=\(\sqrt{169}\)=13 cm

- xét ΔAHC vuông góc tại H, theo đl py-ta-go ta có:

HC2=AC2 - AH2 hay HC2= 152-122=81↔HC=\(\sqrt{81}\)= 9 cm

vậy AB= 13cm và HC= 9cm

13 tháng 3 2020

A B C H

XÉT \(\Delta BAH\)VUÔNG TẠI H

CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)

THAY\(5^2=BH^2+4^2\)

\(\Rightarrow BH^2=5^2-4^2\)

\(\Rightarrow BH^2=25-16\)

\(\Rightarrow BH^2=9\)

\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)

TA CÓ \(BH+HC=BC\)

THAY\(3+12=BC\)

\(BC=15\left(cm\right)\)

XÉT \(\Delta HAC\)VUÔNG TẠI H

CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)

THAY\(AC^2=4^2+12^2\)

\(AC^2=16+144\)

\(AC^2=160\)

\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)

CHU VI \(\Delta ABC\)

\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)

17 tháng 1 2017

3 tháng 3 2018

P/s bạn kia làm cái gì mà mình không hiểu

a) có AB = 15cm ( bài cho)
Xét tam giác AHC có góc AHC = 90 độ( AH vuông góc với BC)
theo định lý py-ta-go có 
AB^2= AH^2+BH^2
=> BH^2 = AB^2 - AH^2
=> BH^2= 15^2- 12^2= 81
=> BH= 9
có BH+ HC=BC => BC= 9+16= 25
Vậy ta có AB= 15cm; BC= 25cm

câu sau tương tự bạn đó ( câu đầu làm mình không thấy tính AB với BC đâu hết )

3 tháng 3 2018

a)Ta có: \(AC^2=AH^2+HC^2\)(định lý pytago)

\(\Rightarrow AC^2=12^2+16^2=144+256=400\)

\(\Rightarrow AC=20cm\)

b)Ta có:\(\widehat{HAC}\)\(+\)\(\widehat{AHC}\)\(+\)\(\widehat{ACH}\)\(=180^o\)(tổng 3 góc trong 1 tam giác)

\(\Rightarrow\widehat{ACH}\)\(=180^o\)\(-\widehat{HAC}\)\(-\widehat{AHC}\)\(=180^o\)\(-37^o-90^o=53^o\)

ta có:\(\widehat{ABC}\)\(=\widehat{HAC}\)\(+\widehat{ACH}\)(tính chất góc ngoài của tam giác)

Hay:\(\widehat{ABC}\)\(=37^o+53^o=90^o\)