K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do O là tâm đường tròn nội tiếp tam giác ABC nên O là giao điểm của ba đường phân giác của tam giác ABC.

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

(hai cung bằng nhau căng hai dây bằng nhau).

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔOAB có Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) và (2) suy ra DB = DC = DO.

Vậy chọn đáp án D.

17 tháng 2 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do O là tâm đường tròn nội tiếp tam giác ABC nên O là giao điểm của ba đường phân giác của tam giác ABC.

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

(hai cung bằng nhau căng hai dây bằng nhau).

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔOAB có Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) và (2) suy ra DB = DC = DO.

Vậy chọn đáp án D.

25 tháng 4 2017

Hướng dẫn làm bài:

Vì AC vad BC tiếp xúc với đường tròn (O), AD đi qua O nên ta có:

ˆCAD=ˆBAD=αCAD^=BAD^=α (vì tâm đường tròn nội tiếp trong tam giác là giao điểm của ba đường phân giác trong tam giác)

⇒ cung CD = cung DB ⇒CD = DB (*)

Tương tự, CO là tia phân giác của góc C nên:

ˆACO=ˆBCO=βACO^=BCO^=β

Mặt khác: ˆDCO=ˆDCB+ˆBCO=α+β(1)(doˆBAD=ˆBCDDCO^=DCB^+BCO^=α+β(1)(doBAD^=BCD^

Ta có: ˆCODCOD^ là góc ngoài của ∆ AOC nên

ˆCOD=ˆOAC+ˆOCA=β+α(2)COD^=OAC^+OCA^=β+α(2)

Từ (1) và (2) ta có: ˆOCD=ˆCODOCD^=COD^

Vậy ∆DOC cân tại D (**)

Từ (*) và (**) suy ra CD = OD = BD

Chọn đáp án D

25 tháng 4 2017

Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 9 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

15 tháng 1 2019

bn vẽ hình đc chưa

16 tháng 1 2019

hình mình chưa vẽ đk 

17 tháng 4 2020

a) Xét (O) có :

AB là tiếp tuyến tại B

AC là tiếp tuyến tại C 

AB cắt AC tại A

\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)

Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau

\(\Rightarrow\)ABOC là tg nt

b) Xét (O) có 

\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE

\(\widehat{BDE}\)là góc nt chắn cung BE

\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)

Xét \(\Delta ABEvà\Delta ADB:\)

\(\widehat{BAD}\)chung

\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)

\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)

c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)

Suy ra \(\widehat{AOC}=\widehat{ACB}\)

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0