K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

1 tháng 9 2018

Bài 1 : Tam giác ABC với trọng tâm G và ba đường trung tuyến là AF, BE, CD.

A B C D E F G

Bài 2 : Tam giác ABC với ba đường cao và trực tâm H.

A B c H

Bài 3 : Tam giác ABC với ba đường phân giác cắt nhau tại \(\text{I}\).

A B C I

Vì AC là đường trung trực của BB' nên CB=CB'

=>ΔCBB' cân tại C

hay \(\widehat{BCA}=\widehat{B'CA}\)

Vì AB là đường trung trực của CC' nên BC=BC'

=>ΔBCC' cân tại B

hay \(\widehat{CBA}=\widehat{C'BA}\)

Vì AB và AC lần lượt là các đường phân giác của các góc CBB' và BCB'

và AB cắt AC tại A

nên A là điểm cách đều ba cạnh của ΔA'BC

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

26 tháng 4 2017

a) Xét tam giác ABM và tam giác ACM có:

AM cạnh chung

AB=AC( tam giác ABC cân tại A )

MB=MC (gt)

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) AM- đường trung tuyến của tam giác ABC (gt)

Và K trọng tâm của tam giác ABC

Suy ra K thuộc AM

Suy ra A,K,M thẳng hàng

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

24 tháng 3 2017

Các bạn giải giúp mình đi. Bài khó quá TT_TT

24 tháng 3 2017

Ngày mai mình nộp bài rồi, mong các bạn chỉ bài giúp mình . mình không hiểu gì về 2 bài toán này cả TT_TT