K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DA
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HX
1
29 tháng 7 2016
Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
A B C M D
Trên nửa mặt phẳng bờ AB không chứa C dựng tam giác đều AMD ta có
\(\widehat{DAM}=\widehat{DAB}+\widehat{BAM}=60^o\Rightarrow\widehat{DAB}=60^o-\widehat{BAM}\)
\(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}=60^o\Rightarrow\widehat{CAM}=60^o-\widehat{BAM}\)
\(\Rightarrow\widehat{DAB}=\widehat{CAM}\)
Xét tg BAD và tg CAM có
\(\widehat{DAB}=\widehat{CAM}\left(cmt\right)\)
\(AD=AM\) (cạnh của tg đều ADM) (1)
\(AB=AC\) (cạnh của tg đều ABC)
\(\Rightarrow\Delta BAD=\Delta CAM\left(c.g.c\right)\Rightarrow CM=BD\)(1)
Theo đề bài ta có \(AM^2=BM^2+CM^2\) mà \(AM=DM\) (cạnh của tg đều ADM) (2)
Thay các kết quả (1) và (2) vào biểu thức
\(\Rightarrow DM^2=BM^2+BD^2\) => Tg BDM vuông tại B (theo định lý pitago đảo) \(\Rightarrow\widehat{DBM}=90^o\)
Ta có \(\Delta BAD=\Delta CAM\left(cmt\right)\Rightarrow\widehat{ABD}=\widehat{ACM}\)
\(\widehat{MCB}=60^o-\widehat{ACM}\)
\(\widehat{MBC}=60^o-\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=180^o-\widehat{MCB}-\widehat{MBC}=180^o-60^o+\widehat{ACM}-60^o+\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=60+\widehat{ACM}+\widehat{ABM}\) mà \(\widehat{ACM}=\widehat{ABD}\left(cmt\right)\)
\(\Rightarrow\widehat{MBC}=60^o+\widehat{ABD}+\widehat{ABM}=60^o+\widehat{DBM}=60^o+90^o=150^o\)