K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

sử dụng t/c đường trung bình nha các bạn ai nhanh mình k

14 tháng 2 2016

tách ra đi dài quá ak

14 tháng 2 2016

moi hok lop 6

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))

29 tháng 12 2018

Vẽ hình, viết GT, KL và trình bày cách làm giúp mk nhé!!!

11 tháng 3 2020

a) Xét tam giác  ABM   và tam giác  DCM có 

+ BM=CM ( gt)

+ Góc AMB = góc DMC ( đối đỉnh)

+ AM = DM

=> tam giác ABM = tam giác DCM ( c-g-c)

 b) Vì tam giác ABM = tam giác DCM

=> góc BAM = Góc CDM ( 2 góc tương ứng ) 

Ta có : Góc BAM = Góc CDM ( c/m trên)

Mà  góc BAM + CAM = 180độ( 2 góc kề bù )   (1)

      góc CDM + BDM = 180độ ( 2 góc kề bù )  (2)

Mà góc BAM = góc CDM 

Từ (1) và (2) => Góc CAM = góc BDM

Xét tam giác ACM và tam giác BDM có 

+ Góc CAM = BDM ( c/m trên)

+ BM = CM ( gt)

+ góc BMD = góc AMC ( đối đỉnh )

=> Tam giác ACM = tam giác BDM ( g.c.g)

=> AC = BD ( 2 cạnh tương ứng)

c)  bạn tự làm ạ . Mình bận

11 tháng 3 2020

A B C D M

a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có

BM =  CM ( gt)

\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )

AM = DM ( gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)

b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có

AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\)  ( 2 góc đối đỉnh )

MC = MB ( gt)

=>  \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)

=> AC = DB ( 2 cạnh tương ứng )

và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong

=> AC // BD

c) +) Theo câu a ta có  \(\Delta\)ABM = \(\Delta\)DCM

=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

+) Xét \(\Delta\)ABC và \(\Delta\)DCB có

\(\widehat{ABM}=\widehat{DCM}\)  ( cmt)

BC : cạnh chung

\(\widehat{ACM}=\widehat{DBM}\) ( cmt) 

=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)

=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )

Mà \(\widehat{BAC}=90^o\) ( gt)

=> \(\widehat{CDB}=90^o\)

Học tốt

Takigawa Maraii

21 tháng 7 2019

O A C B D

Cm: a) Xét t/giác OAD và t/giác OCB

có: OA = OC (gt)

 \(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)

 OD = OB (gt)

=> t/giác OAD = t/giác OCD (c.g.c)

=> AD = BC (2 cạnh t/ứng)

Tương tự, xét t/giác AOB và t/giác COD 

có: OA = OC (gt)

 \(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)

  OB = OD (gt)

=> t/giác AOB = t/giác COD (c.g.c)

=> AB = DC (2 cạnh t/ứng)

b) Xét t/giác ADC và t/giác  CAB

có:  AC : chung

 AD = BC (cmt)

 AB = DC (cmt)

=> t/giác ADC = t/giác CAB (c.c.c)

=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)

Xét t/giác ADB và t/giác CBD

có: AB = CD (cmt)

 AD = CB (cmt)

 BD  : chung

=> t/giác ADB = t/giác CBD (c.c.c)

=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi

Xét tam giác vuông AMB và tam giác vuông AMC ta có : 

BM = MC (gt)

AM chung 

=> Tam giác AMB = tam giác AMC ( hai cạnh góc vuông)

=> BA = AC 

=> Tam giác ABC vuông cân tại A

Mà BM = MC (cmt)

=> M thuộc đường trung tuyến BC 

Mà BA = AC 

=> A thuộc đg trung tuyến BC 

=> MA thuộc dg trung tuyến BC

=> AM = 1/2BC ( trong tam giác vuông cân đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

b)

Ta có AM = MC = BC/2

=> Tam giác AMB cân tại M

=> MAB = ABM = 180 - AMB /2

Vì AM = MC = BC/2

=> Tam giác AMC cân tại M

=> MAC = MCA 

=> MAC = ACM = 180 - AMC /2

=> MAB + MAC = 180 - 1/2AMB + 1/2AMC

=>180 - 180/2 = 90 độ

=> BAC = 90 độ

=> Tam giác ABC vuông tại A