K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

6 tháng 6 2017

Gọi I là giao điểm của phân giác góc B và C

Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC

Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)

=>góc ADC= góc DAH + góc HAC = góc DAC

=> tam giác CAD cân tại C => CA=CD

tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)

CM tương tự, ta có IA = IE (2)

Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE

=> đpcm

6 tháng 6 2017

Hỏi đáp Toán

a: Xét tứ giác OBDC có

\(\widehat{OBD}+\widehat{OCD}=180^0\)

Do đó: OBDC là tứ giác nội tiếp

b: Xét ΔEBA và ΔECB có

\(\widehat{E}\) chung

\(\widehat{EAB}=\widehat{EBC}\)

Do đó: ΔEBA\(\sim\)ΔECB

Suy ra: EB/EC=EA/EB

hay \(EB^2=EC\cdot EA\)

7 tháng 2 2017

a d e m n b c i h

a, tam giác ade cân a

=> góc d = góc e và ad = ae

tam giác adb = tam giác aec ( cgc)

=> ab=ac

=> tam giác abc cân a

b, tam giác bmd vuông m và tam giác cne vuông n

góc m = góc n =90 độ

góc d = góc e

bd = ce

=> bmd = cne (ch-gn)

=> bm = cn

c, có tam giác bmd = tam giác cne

=> góc mbd = góc nce

mà góc cbi đối đỉnh góc mbd, bci đối đỉnh nce

=> góc cbi = góc bci

=> tam giác ibc cân i

d, lây h là trung điểm bc

tam giác abc cân a có ah là đường trung tuyến úng với bc

=> ah vừa là trung tuyến vừa là đường cao ứng với bc

cmtt với ibc => ih vừa là trung tuyến vừa là đường cao ứng với bc

=> a,i,h thẳng hàng

=> ai vừa trung tuyến vừa là đường cao tam giác abc cân a

=> đpcm

30 tháng 12 2018

Bn ghi rõ ràng các góc, tam giác là chữ in hoa bn nhé ok

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

b: Ta có: ΔABC cân tại A

mà AI là đường cao

nên I là trung điểm của BC

Xét ΔABC có

AI là đường trung tuyến

BD là đường trung tuyến

AI cắt BD tại M

Do đó: M là trọng tâm của ΔABC

c: BM=CM=BC/2=3(cm)

Xét ΔABM vuông tại M có

\(AB^2=AM^2+MB^2\)

hay AM=4(cm)

18 tháng 4 2016

∆ABC vuông tại A => BC= AB+ AC2

BC2 = 3+ 42

BC2 = 25

BC = 5

B A C M

Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = 1/2 BC

Vì G là trọng tâm của ∆ ABC nên AG = 2/3 AM AM => AG = 2/3.1/2 BC

=> AG = 1/3 BC = 1/3.5 = 1.7cm