Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tổng a2 + b2 – c2 = 82 + 102 – 132 = -5 < 0
Vậy tam giác này có góc C tù
cos C = = ≈ -0, 3125 => = 91047’
b) Áp dụng công thức tính đường trung tuyến, ta tính được AM ≈ 10,89cm
a: \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+13^2-8^2}{2\cdot10\cdot13}=\dfrac{205}{2\cdot10\cdot13}>0\)
=>góc A nhọn
\(\cos C=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{8^2+10^2-13^2}{2\cdot8\cdot10}=-\dfrac{5}{2\cdot8\cdot10}< 0\)
=>góc C tù
=>ΔABC tù
b: \(MA^2=\dfrac{2\left(b^2+c^2\right)-a^2}{4}=\dfrac{2\cdot\left(10^2+13^2\right)-8^2}{4}=118.5\left(cm\right)\)
nên \(MA=\dfrac{\sqrt{474}}{2}\left(cm\right)\)
a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng
b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng
c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"
Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai
a) \(x_G=\dfrac{-3+9+\left(-5\right)}{3}=\dfrac{1}{3}\).
\(y_G=\dfrac{6+\left(-10\right)+4}{3}=0\).
Vậy \(G\left(\dfrac{1}{3};0\right)\).
b) Tứ giác BGCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{BG}=\overrightarrow{CD}\).
Gọi \(D\left(x;y\right)\).
\(\overrightarrow{BG}\left(-\dfrac{26}{3};10\right);\overrightarrow{CD}\left(x+5;y-4\right)\).
Do \(\overrightarrow{BG}=\overrightarrow{CD}\) nên \(\left\{{}\begin{matrix}x+5=-\dfrac{26}{3}\\y-4=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{41}{3}\\y=14\end{matrix}\right.\).
Vậy \(D\left(-\dfrac{41}{3};14\right)\).
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
Ta có: cosC = a 2 + b 2 − c 2 2 a b = 8 2 + 9 2 − 10 2 2.8.9 > 0
⇒ 0 0 < C ^ < 90 0
Tam giác ABC có AB = c là cạnh lớn nhất. Do đó, góc C là góc lớn nhất.
Lại có: 0 0 < C ^ < 90 0 nên tam giác ABC là tam giác nhọn.
Chọn A