K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0
tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                       a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân...
Đọc tiếp

tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                       a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

 

1
20 tháng 2 2021

bạn ghi thiếu đề kìa

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh

 

 

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.

30 tháng 5 2020

i don ' t know