Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E N P
+) Đặt N,P thứ tự là trung điểm cạnh AB,AC. Có ngay MN,MP là các đường trung bình trong \(\Delta\)ABC
Đồng thời DN vuông góc AB, EP vuông góc AC
Do đó ^DNM = ^MPE (= 900 + ^BAC). Ta cũng có: DN = AB/2 = MP, NM = PE
Suy ra \(\Delta\)DNM = \(\Delta\)MPE (c.g.c). Từ đây DM = ME (1)
Ta thấy ^DME = ^NMP + ^NMD + ^PME = ^BAC + ^NMD + ^NDM = ^BAC + 1800 - ^BNM - 900 = 900 (2)
Từ (1) và (2) suy ra \(\Delta\)MDE vuông cân tại M (đpcm).
+) Ta dễ có \(AD=\frac{\sqrt{2}}{2}AB,AE=\frac{\sqrt{2}}{2}AC\)(Tỉ số lượng giác)
Theo quy tắc 3 điểm thì \(DE\le AD+AE=\frac{\sqrt{2}}{2}\left(AB+AC\right)\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi A thuộc DE <=> ^BAC + ^BAD + ^CAE = 1800 => ^BAC = 900.
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
câu a nè:
Tam giác ABD cân suy ra góc A=D=45
ACE cân => Góc A=E=45
Tính tổng 3 góc ở đỉnh A =180 => thẳng hàng
a) Chứng minh D E A ^ = 180 0
b) Chứng minh
A I M ^ = A K M ^ = I A K ^ = 90 0
c) Chứng minh DDME có E D M ^ = D E M ^ = 45 0
Þ DDME vuông cân ở M.