Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình:
A B C M D E
a)Xét tam giác AMB và tam giác CMD:
Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)
=> tam giác AMB=tam giác CMD(c.G.c)
b)Vì tam giác AMB=tam giác CMD
=>BAM=DCM(hai góc tương ứng)
Mà BAM=90 Độ
=>DCM=90 độ
=>MC vuông góc với CD
mà Ba điểm A,M,C trùng nhau
=>AC vuông góc với CD(ĐPCM)
c) mình không biết cách làm
mong bạn k đúng cho mình nha
A B C N M D E
a) Xét tam giác AEN và tam giác BNC có :
\(AN=BN\left(gt\right)\)
\(\widehat{ANE}=\widehat{CNB}\) ( 2 góc đối đỉnh )
\(EN=NC\left(gt\right)\)
\(\rightarrow\Delta AEN=\Delta BNC\left(c.g.c\right)\)
\(\rightarrow AE=BC\left(1\right)\)
Xét tam giác AMD và tam giác CMB có :
\(AM=MC\left(gt\right)\)
\(\widehat{AMD}=\widehat{CMB}\)( 2 góc đối đỉnh )
\(MD=MB\left(gt\right)\)
\(\rightarrow\Delta AMD=\Delta CMB\left(c.g.c\right)\)
\(\rightarrow AD=BC\left(2\right)\)
Từ (1),(2) \(\rightarrow AE=AD\)
b) Ta có : \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^O\)
Mà\(\widehat{ABC}=\widehat{EAB}\) ( tam giác AEN = tam giác BCN )
\(\widehat{ACB}=\widehat{CAD}\)( tam giác AMD = tam giác CMB )
\(\rightarrow\)\(\widehat{CAD}+\widehat{BAC}+\widehat{EAB}=180^O\)
\(\rightarrow\) E,A,D thẳng hàng
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
a)Xét ΔAMD và ΔCMB có :
góc AMB = góc CMD ( đối đỉnh)
AM = NC ( GT)
BM = MD ( GT)
--->ΔAMD = ΔCMB(c.g.c)
b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)
tạo ra hai góc so le trong bằng nhau
--->AD//BC
c)Xét ΔABC và ΔCDA có :
AC : cạnh chung
AD = BC (ΔAMD = ΔCMB)
góc CAD = góc ACB(ΔAMD = ΔCMB)
--->ΔABC = ΔCDA(c.g.c)
d)ta có AE + ED = AD
AF+ FC = BC
mà EF= BF; AD = BC
--->AE = FC
xét ΔAFC và ΔACE có :
AE = FC (CMT)
AC : cạnh chung
góc CAE = góc ACF (ΔAMD = ΔCMB)
--->ΔAFC = ΔCEA ( c.g.c)
--->góc AEC = góc AFC ( hai góc tương ứng)
--->góc AEC = góc AFC=90'
--->AF vuông góc với BC
a) Xét t/g AMD và t/g CMB có:
AM = CM (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)
b) t/g AMD = t/g CMB (câu a)
=> ADM = CBM (2 góc tương ứng)
Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)
c) t/g AMD = t/g CMB (câu a)
=> AD = BC (2 cạnh tương ứng)
Xét t/g ABC và t/g CDA có:
BC = AD (gt)
ACB = CAD (so le trong)
AC là cạnh chung
Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)
d) Có: AD = BC (câu c)
DE = BF (gt)
Suy ra AD - DE = BC - BF
=> AE = CF
Mà AE // CF do AD // BC (câu b)
Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)
Lại có: CE _|_ AD (gt) => AF _|_ AD
Mà BC // AD (câu b) => AF _|_ BC (đpcm)
a)Xét △ AMB và △ CMD
có: MA=MC(vì m là trung điểm của BC)
∠AMB=∠CMD
BD: cạnh chung
do đó :△ AMB=△ CMD(c.g.c)
b)Vì △AMB=△CMD(cm trên)
Nên ta có: ∠BAM=∠DCM(2 góc tương ứng)
Mà ∠BAM=900
⇔∠DCM=900
Hay CD⊥AC(đpcm)
c) có lộn đề không vậy
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC