K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:

Nếu $p$ chia hết cho 3 thì $p=3$. Khi đó $8p-1=8.3-1=23$ là snt (thỏa mãn đề).

$8p+1=8.3+1=25$ là hợp số.

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ thì $8p+1=8(3k+1)+1=24k+9$ chia hết cho 3. Mà $8p+1>3$ nên $8p+1$ là hợp số.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó $8p-1=8(3k+2)-1=24k+15\vdots 3$. Mà $8p-1>3$ nên không là snt (trái với điều kiện đề)

Vậy tóm lại $8p+1$ là hợp số.

25 tháng 11 2017

Là số nguyên tố

25 tháng 11 2017

Bạn giải ra cho mk rồi mk tk cho!

16 tháng 7 2016

Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.

Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.

Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.

Bài toán được chứng minh.

16 tháng 7 2016

Xét p dưới dạng : 3k (khi đó p=3), 3k+1,3k+2(k∈N).

Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p−1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số.

30 tháng 1 2020

a, Số dư luôn <3

7 tháng 5 2021

câu 2:

p là 1 số nguyên tố (p>3),

do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2

nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.

câu 3:

Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)

Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số

Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2 

Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)

=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số 

7 tháng 5 2021

Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là

3k + 1 hoặc 3k + 2

ta có

p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)

vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số  (1)

nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)

vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số  (2)

từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS

Vậy .................

14 tháng 6 2017

on muộn thế

14 tháng 6 2017

giúp mình với

26 tháng 5 2016

Đặt n2 + 2006 = a2 (a Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (kN*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

26 tháng 5 2016

n là số nguyên tố lớn hơn 3 => n2 đồng dư với 1 (mod 3)

n2+2006 đồng dư với 1+2006 (mod 3)

<=> n+ 2006 đồng dư với 2007 (mod 3) đồng dư với 0 (mod 3) (*Vì 2007 chia hết 3*)

=> n2 +2006 chia hết 3

Vậy n2 +2006 là hợp số

25 tháng 11 2017

vì p là SNT>3 nên p có dạng 3k+1 hoặc 3k+2

với p=3k+2 => 4p+1=12k+9 => 4p+1 chia hết cho 3(loại, vì 4p+1 là số nguyên tố)

vậy p=4k+1 => 8p+1=32k+9(lẻ)

=> 8p+1 là SNT

30 tháng 5 2018

Bài 2 :

Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )

Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2

Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số

Vậy ...

Bài 1 :

Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố 

Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố

Bài 2

Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3

Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số 

Chúc bạn học tốt ( -_- )

22 tháng 4 2018

\(Ta\)có:

Tổng các chữ số của M là:

\(1+1+1+...+1=2010.1=2010⋮3\)

\(\Rightarrow M\)là hợp số

Vậy...