Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{2}-1-2\sqrt{3}=a+b\sqrt{2}+c\sqrt{3}\) (*)
Nhìn vào (*) ta dễ dàng thấy
\(-2\sqrt{3}=c\sqrt{3}\rightarrow c=-2\)
\(\sqrt{2}=b\sqrt{2}\rightarrow b=1\)
Và a=-1.Suy ra a+b+c=(-2)+1+(-1)=-2
\(\sqrt{10-2\sqrt{21}}=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
=\(\sqrt{7}-\sqrt{3}\)
=> a=7 và b=3
=> a-b=7-3=4
\(\sqrt{10-2\sqrt{21}}=\sqrt{7}-\sqrt{3}\)
\(\Rightarrow\sqrt{7}-\sqrt{3}=\sqrt{a}-\sqrt{b}\)
Suy ra \(\sqrt{7}=\sqrt{a}\rightarrow a=7\)
\(\sqrt{3}=\sqrt{3}\rightarrow b=3\)
Vậy \(a-b=7-3=4\)
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
=> a=11 và b=5
=> a-b=6
\(ax^3+bx^2+c⋮x+2\)
\(\Rightarrow x=-2\) là nghiệm của pt \(ax^3+bx^2+c=0\)
\(\Rightarrow8a-4b-c=0\)
\(ax^3+bx^2+c\) chia \(x^2-1\) dư x+5
\(\Rightarrow ax^3+bx^2+c-x-5=0\)
\(\Leftrightarrow x=\pm1\)\(\Rightarrow\begin{cases}a+b+c=6\\-a+b+c=4\end{cases}\)
Ta có hpt \(\begin{cases}8a-4b-c=0\\a+b+c=6\\-a+b+c=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=b=1\\c=4\end{cases}\)
\(\sqrt{14-6\sqrt{5}}=\sqrt{14-2\sqrt{9.5}}=\sqrt{\left(3-\sqrt{5}\right)^2}\)
=\(3-\sqrt{5}\)
=> a=3 và b=-1
=> a+b=3-1=2
Ta có $\sqrt{55-6\sqrt{6}}$ = $\sqrt{55-2.3.\sqrt{6}}$ = $\sqrt{55-2\sqrt{54}}$ = $\sqrt{\left(54^2\right)-2.54+1}$ = $\sqrt{\left(\sqrt{54}-1\right)^2}$ = $\sqrt{54-1}$ = $3\sqrt{6}$ -1
$\Rightarrow $ a=-1 và b=3
$\Rightarrow $ a-b=-1-3=-4
ta có : \(\sqrt{55-6\sqrt{6}}=\sqrt{55-2\sqrt{54}}\)
= \(\sqrt{54-2\sqrt{54.1}+1}=\sqrt{\left(\sqrt{54}-1\right)^2}\)
=\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)
=>a=-1 và b=3
=> a-b=-1-3=-4
\(A=a^2+a+3=\dfrac{\left(2a+1\right)^2+11}{4}\)
\(B=\sqrt{A}=\dfrac{1}{2}\sqrt{\left(2a+1\right)^2+11}\)
để B có giá trị huu tỷ \(C=\left(2a+1\right)^2+11=k^2\Rightarrow k^2-\left(2a+1\right)^2=11\)
\(\Rightarrow\left|2a+1\right|=5\Rightarrow\left[\begin{matrix}a=2\\a=-3\end{matrix}\right.\)
Ta có: \(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)
\(M=\left(a+b+c\right)\left(a^2+b^2-ab\right)\)
\(M=0.\left(a^2+b^2-ab\right)\)
\(M=0\)
Vậy \(M=0\)