K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

Chọn A.

Đặt 

 

31 tháng 8 2019

Đáp án B.

Đặt  suy ra tập hợp các điểm M(z) = (x;y)  là đường tròn (C) có tâm I(3;4) và bán kính R =  5

Ta có 

Ta cần tìm P sao cho đường thẳng ∆  và đường tròn (C) có điểm chung 

Do đó 

2 tháng 1 2019

Đáp án C

HD: Ta có

Tập hợp điểm M(z) là đường tròn  tâm I(3;-2), R=3. 

Gọi A(1;2), B(5;2) và E(3;2) là trung điểm của AB suy ra P=MA+MB 

Lại có

 

P lớn nhất  ME lớn nhất.

 

Vậy 

17 tháng 4 2019

Đáp án C.

NV
22 tháng 4 2022

Mọi điểm M biểu diễn z đều phải thỏa mãn 2 điều kiện: vừa thuộc đường tròn (C) vừa thuộc đường thẳng \(\Delta\)  (tham số P)

Do đó, M là giao điểm của (C) và \(\Delta\)

Hay tham số P  phải thỏa mãn sao cho (C) và \(\Delta\) có ít nhất 1 điểm chung

Hay hệ pt nói trên có nghiệm (thật ra chi tiết đó là thừa, chỉ cần biện luận (C) và \(\Delta\) có ít nhất 1 điểm chung \(\Rightarrow d\left(I;\Delta\right)\le R\) là đủ)

22 tháng 4 2022

từ chỗ \(\left(\Delta\right)\) con có được suy ra tập hợp \(z\) là một đường thẳng \(y=-2x+\dfrac{P-3}{2}\) không ạ?

NV
10 tháng 4 2022

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

NV
10 tháng 4 2022

undefined

26 tháng 8 2017

Đáp án C

6 tháng 7 2017

Đáp án C

Đặt  Số phức z được biểu diễn bởi điểm N(x;y)

Số phức  được biểu diễn bởi điểm A(-2;1)

Số phức  được biểu diễn bởi điểm B(5;-6)

được biểu diễn bởi điểm

Ta có: |z + 2 - i| + |z - 5 + 6i| = 7 2 Mà AB = 7 2  nên N thuộc đoạn thẳng AB.

Đường thẳng AB: 

=> phương trình đường thẳng AB là: x + y + 1 = 0

Vì N(x;y) thuộc đoạn thẳng AB nên x + y +1 = 0, x ∈ [-2;5]

Ta có: 

Xét trên [-2;5] ta có: f'(x) = 4(x-1)

Ta có: 

Vậy M + m = 4 2

30 tháng 10 2017

Đáp án A

Đặt z = x + yi

Có 

TH1: 

Xét hàm số:  trên 

Có 

Ta có: 

TH2: 

Xét hàm số:  trên

Ta có: