Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: kết quả:
Tập hợp điểm biểu diễn các số phức z thỏa mãn với là số phức cho trước, r ∈ ℝ là đường tròn I(a,b), bán kính r.
Đặt \(z=a+bi\Rightarrow\overline{z}=a-bi\)
Ta có \(z.\overline{z}=1\Leftrightarrow\left(a+bi\right)\left(a-bi\right)=1\)
\(\Leftrightarrow a^2-b^2i^2=1\Leftrightarrow a^2+b^2=1\)
\(\Rightarrow\) Tập hợp các số phức thỏa mãn điều kiện trên là một đường tròn có tâm là gốc tọa độ, bán kính 1 đơn vị độ dài
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Đáp án C
Đặt Số phức w được biểu diễn bởi điểm M (x;y).
Ta có:
=> |z| =
Vậy số phức w được biểu diễn bởi đường tròn tâm I (0;1), bán kính R = 20 và có phương trình:
Đáp án C.
Ta có:
Do đó tập hợp điểm biểu diễn w là đường tròn tâm (3;-2) bán kính R= 2 5