K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

Để hai hàm số cắt nhau tại hai điểm phân biệt thì phương trình

\(\frac{x+1}{x-1}+(2x-m)=0\Leftrightarrow 2x^2-(m+1)x+(m+1)=0\) có hai nghiệm phân biệt

\(\Rightarrow \Delta =(m+1)^2-8(m+1)>0\Leftrightarrow m>7\) hoặc $m<-1$

Hai điểm $A,B$ có hoành độ tương ứng với nghiệm của phương trình giao điểm. Do đó áp dụng hệ thức Viet: \(x_A+x_B=\frac{m+1}{2}\)

Hoành độ trung điểm $AB$ là \(\frac{x_A+x_B}{2}=\frac{m+1}{4}=\frac{5}{2}\Rightarrow m=9\)

Do đó đáp án $C$ là đáp án đúng

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)

\(\Rightarrow 13^t=3^t+4^t+12^t\)

\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)

Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)

Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)

Đáp án B

20 tháng 10 2017

cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)

NV
20 tháng 3 2019

Đặt \(t=-x\Rightarrow dx=-dt\)

\(I=\int\limits^{-2}_2\frac{t^{2018}}{e^{-t}+1}\left(-dt\right)=\int\limits^2_{-2}\frac{e^t.t^{2018}}{e^t+1}dt=\int\limits^2_{-2}\frac{e^x.x^{2018}}{e^x+1}dx\)

\(\Rightarrow I+I=\int\limits^2_{-2}\frac{x^{2018}+e^x.x^{2018}}{e^x+1}dx=\int\limits^2_{-2}x^{2018}dx=\frac{2.2^{2019}}{2019}\)

\(\Rightarrow I=\frac{2^{2019}}{2019}\)

20 tháng 3 2019

Cảm ơn bạn rất nhiều !

11 tháng 5 2016

\(I=9^{\frac{1}{\log_63}}+4^{\frac{1}{\log_82}}-10^{\log99}=\left(3^2\right)^{\log_36}+\left(2^2\right)^{\log_28}-99\)

   \(=3^{\log_36^2}+2^{\log_38^2}-99=6^2+8^2-99=1\)

AH
Akai Haruma
Giáo viên
2 tháng 8 2017

Lời giải:

PT hoành độ giao điểm:

\(x^2(m-1)+x(12-7m)+(10m-29)=0(1)\)

Để hai đồ thị hàm số cắt nhau tại hai điểm phân biệt thì PT $(1)$ phải có hai nghiệm phân biệt \(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ \Delta=(12-7m)^2-4(m-1)(10m-29)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ 9m^2-12m+28=(3m-2)^2+24>0\end{matrix}\right.\Leftrightarrow m\neq 1\)

Khi đó , áp dụng định lý Viete, nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì: \(x_1+x_2=\frac{7m-12}{m-1}\)

Hai giao điểm của hai ĐTHS là \(A(x_1,m(x_1-5)+10);B(x_2,m(x_2-5)+10)\)

\(M(5,10)\) là trung điểm của $AB$

\(\Leftrightarrow \left\{\begin{matrix} \frac{x_1+x_2}{2}=5\\ \frac{y_1+y_2}{2}=\frac{m(x_1+x_2)-10m+20}{2}=10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{7m-12}{m-1}=10\\ \frac{m(7m-12)}{m-1}=10m\end{matrix}\right.\)

Suy ra \(m=\frac{-2}{3}\) (thỏa mãn)

28 tháng 11 2016

ta có X =log(9,23/2)

TỪ ĐÓ THẤY X VÀO BIỂU THỨC THÌ TA RA ĐC ĐÁP ÁN .